Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     _fjsp_v2r8       itab_tmp;
101     _fjsp_v2r8       dummy_mask,cutoff_mask;
102     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
103     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
104     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
105
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
126     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
131     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
132     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
159                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
160
161         fix0             = _fjsp_setzero_v2r8();
162         fiy0             = _fjsp_setzero_v2r8();
163         fiz0             = _fjsp_setzero_v2r8();
164         fix1             = _fjsp_setzero_v2r8();
165         fiy1             = _fjsp_setzero_v2r8();
166         fiz1             = _fjsp_setzero_v2r8();
167         fix2             = _fjsp_setzero_v2r8();
168         fiy2             = _fjsp_setzero_v2r8();
169         fiz2             = _fjsp_setzero_v2r8();
170
171         /* Reset potential sums */
172         velecsum         = _fjsp_setzero_v2r8();
173         vvdwsum          = _fjsp_setzero_v2r8();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _fjsp_sub_v2r8(ix0,jx0);
191             dy00             = _fjsp_sub_v2r8(iy0,jy0);
192             dz00             = _fjsp_sub_v2r8(iz0,jz0);
193             dx10             = _fjsp_sub_v2r8(ix1,jx0);
194             dy10             = _fjsp_sub_v2r8(iy1,jy0);
195             dz10             = _fjsp_sub_v2r8(iz1,jz0);
196             dx20             = _fjsp_sub_v2r8(ix2,jx0);
197             dy20             = _fjsp_sub_v2r8(iy2,jy0);
198             dz20             = _fjsp_sub_v2r8(iz2,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
202             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
203             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
204
205             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
206             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
207             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
208
209             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
210             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
211             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217
218             fjx0             = _fjsp_setzero_v2r8();
219             fjy0             = _fjsp_setzero_v2r8();
220             fjz0             = _fjsp_setzero_v2r8();
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _fjsp_mul_v2r8(iq0,jq0);
230             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
231                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
232
233             /* EWALD ELECTROSTATICS */
234
235             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
236             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
237             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
238             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
239             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
240
241             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
242             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
243             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
244             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
245             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
246             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
247             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
248             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
249             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
250             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
251
252             /* LENNARD-JONES DISPERSION/REPULSION */
253
254             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
255             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
256             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
257             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
258             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             velecsum         = _fjsp_add_v2r8(velecsum,velec);
262             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
263
264             fscal            = _fjsp_add_v2r8(felec,fvdw);
265
266             /* Update vectorial force */
267             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
268             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
269             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
270             
271             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
272             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
273             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq10             = _fjsp_mul_v2r8(iq1,jq0);
283
284             /* EWALD ELECTROSTATICS */
285
286             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
287             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
288             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
289             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
290             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
291
292             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
293             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
294             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
295             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
296             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
297             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
298             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
299             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
300             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
301             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _fjsp_add_v2r8(velecsum,velec);
305
306             fscal            = felec;
307
308             /* Update vectorial force */
309             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
310             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
311             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
312             
313             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
314             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
315             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq20             = _fjsp_mul_v2r8(iq2,jq0);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
330             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
331             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
332             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
333
334             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
335             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
336             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
337             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
338             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
339             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
340             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
341             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
342             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
343             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velecsum         = _fjsp_add_v2r8(velecsum,velec);
347
348             fscal            = felec;
349
350             /* Update vectorial force */
351             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
352             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
353             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
354             
355             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
356             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
357             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
358
359             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
360
361             /* Inner loop uses 147 flops */
362         }
363
364         if(jidx<j_index_end)
365         {
366
367             jnrA             = jjnr[jidx];
368             j_coord_offsetA  = DIM*jnrA;
369
370             /* load j atom coordinates */
371             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
372                                               &jx0,&jy0,&jz0);
373
374             /* Calculate displacement vector */
375             dx00             = _fjsp_sub_v2r8(ix0,jx0);
376             dy00             = _fjsp_sub_v2r8(iy0,jy0);
377             dz00             = _fjsp_sub_v2r8(iz0,jz0);
378             dx10             = _fjsp_sub_v2r8(ix1,jx0);
379             dy10             = _fjsp_sub_v2r8(iy1,jy0);
380             dz10             = _fjsp_sub_v2r8(iz1,jz0);
381             dx20             = _fjsp_sub_v2r8(ix2,jx0);
382             dy20             = _fjsp_sub_v2r8(iy2,jy0);
383             dz20             = _fjsp_sub_v2r8(iz2,jz0);
384
385             /* Calculate squared distance and things based on it */
386             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
387             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
388             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
389
390             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
391             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
392             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
393
394             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
395             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
396             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
397
398             /* Load parameters for j particles */
399             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
400             vdwjidx0A        = 2*vdwtype[jnrA+0];
401
402             fjx0             = _fjsp_setzero_v2r8();
403             fjy0             = _fjsp_setzero_v2r8();
404             fjz0             = _fjsp_setzero_v2r8();
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq00             = _fjsp_mul_v2r8(iq0,jq0);
414             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
415
416             /* EWALD ELECTROSTATICS */
417
418             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
419             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
420             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
421             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
422             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
423
424             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
425             ewtabD           = _fjsp_setzero_v2r8();
426             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
427             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
428             ewtabFn          = _fjsp_setzero_v2r8();
429             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
430             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
431             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
432             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
433             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
434
435             /* LENNARD-JONES DISPERSION/REPULSION */
436
437             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
438             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
439             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
440             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
441             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
445             velecsum         = _fjsp_add_v2r8(velecsum,velec);
446             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
447             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
448
449             fscal            = _fjsp_add_v2r8(felec,fvdw);
450
451             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
452
453             /* Update vectorial force */
454             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
455             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
456             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
457             
458             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
459             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
460             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq10             = _fjsp_mul_v2r8(iq1,jq0);
470
471             /* EWALD ELECTROSTATICS */
472
473             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
474             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
475             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
476             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
477             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
478
479             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
480             ewtabD           = _fjsp_setzero_v2r8();
481             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
482             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
483             ewtabFn          = _fjsp_setzero_v2r8();
484             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
485             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
486             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
487             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
488             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
489
490             /* Update potential sum for this i atom from the interaction with this j atom. */
491             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
492             velecsum         = _fjsp_add_v2r8(velecsum,velec);
493
494             fscal            = felec;
495
496             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
497
498             /* Update vectorial force */
499             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
500             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
501             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
502             
503             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
504             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
505             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
512
513             /* Compute parameters for interactions between i and j atoms */
514             qq20             = _fjsp_mul_v2r8(iq2,jq0);
515
516             /* EWALD ELECTROSTATICS */
517
518             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
519             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
520             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
521             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
522             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
523
524             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
525             ewtabD           = _fjsp_setzero_v2r8();
526             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
527             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
528             ewtabFn          = _fjsp_setzero_v2r8();
529             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
530             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
531             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
532             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
533             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
537             velecsum         = _fjsp_add_v2r8(velecsum,velec);
538
539             fscal            = felec;
540
541             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
542
543             /* Update vectorial force */
544             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
545             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
546             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
547             
548             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
549             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
550             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
551
552             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
553
554             /* Inner loop uses 147 flops */
555         }
556
557         /* End of innermost loop */
558
559         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
560                                               f+i_coord_offset,fshift+i_shift_offset);
561
562         ggid                        = gid[iidx];
563         /* Update potential energies */
564         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
565         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
566
567         /* Increment number of inner iterations */
568         inneriter                  += j_index_end - j_index_start;
569
570         /* Outer loop uses 20 flops */
571     }
572
573     /* Increment number of outer iterations */
574     outeriter        += nri;
575
576     /* Update outer/inner flops */
577
578     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
579 }
580 /*
581  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sparc64_hpc_ace_double
582  * Electrostatics interaction: Ewald
583  * VdW interaction:            LennardJones
584  * Geometry:                   Water3-Particle
585  * Calculate force/pot:        Force
586  */
587 void
588 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sparc64_hpc_ace_double
589                     (t_nblist                    * gmx_restrict       nlist,
590                      rvec                        * gmx_restrict          xx,
591                      rvec                        * gmx_restrict          ff,
592                      t_forcerec                  * gmx_restrict          fr,
593                      t_mdatoms                   * gmx_restrict     mdatoms,
594                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
595                      t_nrnb                      * gmx_restrict        nrnb)
596 {
597     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
598      * just 0 for non-waters.
599      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
600      * jnr indices corresponding to data put in the four positions in the SIMD register.
601      */
602     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
603     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
604     int              jnrA,jnrB;
605     int              j_coord_offsetA,j_coord_offsetB;
606     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
607     real             rcutoff_scalar;
608     real             *shiftvec,*fshift,*x,*f;
609     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
610     int              vdwioffset0;
611     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
612     int              vdwioffset1;
613     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
614     int              vdwioffset2;
615     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
616     int              vdwjidx0A,vdwjidx0B;
617     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
618     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
619     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
620     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
621     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
622     real             *charge;
623     int              nvdwtype;
624     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
625     int              *vdwtype;
626     real             *vdwparam;
627     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
628     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
629     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
630     real             *ewtab;
631     _fjsp_v2r8       itab_tmp;
632     _fjsp_v2r8       dummy_mask,cutoff_mask;
633     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
634     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
635     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
636
637     x                = xx[0];
638     f                = ff[0];
639
640     nri              = nlist->nri;
641     iinr             = nlist->iinr;
642     jindex           = nlist->jindex;
643     jjnr             = nlist->jjnr;
644     shiftidx         = nlist->shift;
645     gid              = nlist->gid;
646     shiftvec         = fr->shift_vec[0];
647     fshift           = fr->fshift[0];
648     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
649     charge           = mdatoms->chargeA;
650     nvdwtype         = fr->ntype;
651     vdwparam         = fr->nbfp;
652     vdwtype          = mdatoms->typeA;
653
654     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
655     ewtab            = fr->ic->tabq_coul_F;
656     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
657     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
658
659     /* Setup water-specific parameters */
660     inr              = nlist->iinr[0];
661     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
662     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
663     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
664     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
665
666     /* Avoid stupid compiler warnings */
667     jnrA = jnrB = 0;
668     j_coord_offsetA = 0;
669     j_coord_offsetB = 0;
670
671     outeriter        = 0;
672     inneriter        = 0;
673
674     /* Start outer loop over neighborlists */
675     for(iidx=0; iidx<nri; iidx++)
676     {
677         /* Load shift vector for this list */
678         i_shift_offset   = DIM*shiftidx[iidx];
679
680         /* Load limits for loop over neighbors */
681         j_index_start    = jindex[iidx];
682         j_index_end      = jindex[iidx+1];
683
684         /* Get outer coordinate index */
685         inr              = iinr[iidx];
686         i_coord_offset   = DIM*inr;
687
688         /* Load i particle coords and add shift vector */
689         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
690                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
691
692         fix0             = _fjsp_setzero_v2r8();
693         fiy0             = _fjsp_setzero_v2r8();
694         fiz0             = _fjsp_setzero_v2r8();
695         fix1             = _fjsp_setzero_v2r8();
696         fiy1             = _fjsp_setzero_v2r8();
697         fiz1             = _fjsp_setzero_v2r8();
698         fix2             = _fjsp_setzero_v2r8();
699         fiy2             = _fjsp_setzero_v2r8();
700         fiz2             = _fjsp_setzero_v2r8();
701
702         /* Start inner kernel loop */
703         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
704         {
705
706             /* Get j neighbor index, and coordinate index */
707             jnrA             = jjnr[jidx];
708             jnrB             = jjnr[jidx+1];
709             j_coord_offsetA  = DIM*jnrA;
710             j_coord_offsetB  = DIM*jnrB;
711
712             /* load j atom coordinates */
713             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
714                                               &jx0,&jy0,&jz0);
715
716             /* Calculate displacement vector */
717             dx00             = _fjsp_sub_v2r8(ix0,jx0);
718             dy00             = _fjsp_sub_v2r8(iy0,jy0);
719             dz00             = _fjsp_sub_v2r8(iz0,jz0);
720             dx10             = _fjsp_sub_v2r8(ix1,jx0);
721             dy10             = _fjsp_sub_v2r8(iy1,jy0);
722             dz10             = _fjsp_sub_v2r8(iz1,jz0);
723             dx20             = _fjsp_sub_v2r8(ix2,jx0);
724             dy20             = _fjsp_sub_v2r8(iy2,jy0);
725             dz20             = _fjsp_sub_v2r8(iz2,jz0);
726
727             /* Calculate squared distance and things based on it */
728             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
729             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
730             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
731
732             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
733             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
734             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
735
736             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
737             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
738             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
739
740             /* Load parameters for j particles */
741             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
742             vdwjidx0A        = 2*vdwtype[jnrA+0];
743             vdwjidx0B        = 2*vdwtype[jnrB+0];
744
745             fjx0             = _fjsp_setzero_v2r8();
746             fjy0             = _fjsp_setzero_v2r8();
747             fjz0             = _fjsp_setzero_v2r8();
748
749             /**************************
750              * CALCULATE INTERACTIONS *
751              **************************/
752
753             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
754
755             /* Compute parameters for interactions between i and j atoms */
756             qq00             = _fjsp_mul_v2r8(iq0,jq0);
757             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
758                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
759
760             /* EWALD ELECTROSTATICS */
761
762             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
763             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
764             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
765             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
766             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
767
768             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
769                                          &ewtabF,&ewtabFn);
770             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
771             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
772
773             /* LENNARD-JONES DISPERSION/REPULSION */
774
775             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
776             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
777
778             fscal            = _fjsp_add_v2r8(felec,fvdw);
779
780             /* Update vectorial force */
781             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
782             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
783             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
784             
785             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
786             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
787             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
788
789             /**************************
790              * CALCULATE INTERACTIONS *
791              **************************/
792
793             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
794
795             /* Compute parameters for interactions between i and j atoms */
796             qq10             = _fjsp_mul_v2r8(iq1,jq0);
797
798             /* EWALD ELECTROSTATICS */
799
800             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
801             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
802             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
803             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
804             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
805
806             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
807                                          &ewtabF,&ewtabFn);
808             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
809             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
810
811             fscal            = felec;
812
813             /* Update vectorial force */
814             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
815             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
816             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
817             
818             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
819             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
820             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
827
828             /* Compute parameters for interactions between i and j atoms */
829             qq20             = _fjsp_mul_v2r8(iq2,jq0);
830
831             /* EWALD ELECTROSTATICS */
832
833             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
834             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
835             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
836             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
837             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
838
839             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
840                                          &ewtabF,&ewtabFn);
841             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
842             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
843
844             fscal            = felec;
845
846             /* Update vectorial force */
847             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
848             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
849             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
850             
851             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
852             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
853             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
854
855             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
856
857             /* Inner loop uses 127 flops */
858         }
859
860         if(jidx<j_index_end)
861         {
862
863             jnrA             = jjnr[jidx];
864             j_coord_offsetA  = DIM*jnrA;
865
866             /* load j atom coordinates */
867             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
868                                               &jx0,&jy0,&jz0);
869
870             /* Calculate displacement vector */
871             dx00             = _fjsp_sub_v2r8(ix0,jx0);
872             dy00             = _fjsp_sub_v2r8(iy0,jy0);
873             dz00             = _fjsp_sub_v2r8(iz0,jz0);
874             dx10             = _fjsp_sub_v2r8(ix1,jx0);
875             dy10             = _fjsp_sub_v2r8(iy1,jy0);
876             dz10             = _fjsp_sub_v2r8(iz1,jz0);
877             dx20             = _fjsp_sub_v2r8(ix2,jx0);
878             dy20             = _fjsp_sub_v2r8(iy2,jy0);
879             dz20             = _fjsp_sub_v2r8(iz2,jz0);
880
881             /* Calculate squared distance and things based on it */
882             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
883             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
884             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
885
886             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
887             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
888             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
889
890             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
891             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
892             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
893
894             /* Load parameters for j particles */
895             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
896             vdwjidx0A        = 2*vdwtype[jnrA+0];
897
898             fjx0             = _fjsp_setzero_v2r8();
899             fjy0             = _fjsp_setzero_v2r8();
900             fjz0             = _fjsp_setzero_v2r8();
901
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
907
908             /* Compute parameters for interactions between i and j atoms */
909             qq00             = _fjsp_mul_v2r8(iq0,jq0);
910             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
911
912             /* EWALD ELECTROSTATICS */
913
914             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
915             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
916             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
917             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
918             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
919
920             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
921             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
922             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
923
924             /* LENNARD-JONES DISPERSION/REPULSION */
925
926             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
927             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
928
929             fscal            = _fjsp_add_v2r8(felec,fvdw);
930
931             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
932
933             /* Update vectorial force */
934             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
935             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
936             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
937             
938             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
939             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
940             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
941
942             /**************************
943              * CALCULATE INTERACTIONS *
944              **************************/
945
946             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
947
948             /* Compute parameters for interactions between i and j atoms */
949             qq10             = _fjsp_mul_v2r8(iq1,jq0);
950
951             /* EWALD ELECTROSTATICS */
952
953             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
954             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
955             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
956             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
957             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
958
959             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
960             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
961             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
962
963             fscal            = felec;
964
965             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
966
967             /* Update vectorial force */
968             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
969             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
970             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
971             
972             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
973             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
974             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq20             = _fjsp_mul_v2r8(iq2,jq0);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
989             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
990             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
991             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
992
993             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
994             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
995             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
996
997             fscal            = felec;
998
999             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1000
1001             /* Update vectorial force */
1002             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1003             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1004             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1005             
1006             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1007             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1008             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1009
1010             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1011
1012             /* Inner loop uses 127 flops */
1013         }
1014
1015         /* End of innermost loop */
1016
1017         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1018                                               f+i_coord_offset,fshift+i_shift_offset);
1019
1020         /* Increment number of inner iterations */
1021         inneriter                  += j_index_end - j_index_start;
1022
1023         /* Outer loop uses 18 flops */
1024     }
1025
1026     /* Increment number of outer iterations */
1027     outeriter        += nri;
1028
1029     /* Update outer/inner flops */
1030
1031     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1032 }