Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LennardJones
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     _fjsp_v2r8       itab_tmp;
103     _fjsp_v2r8       dummy_mask,cutoff_mask;
104     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
105     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
106     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
128     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
133     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
134     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
162
163         fix0             = _fjsp_setzero_v2r8();
164         fiy0             = _fjsp_setzero_v2r8();
165         fiz0             = _fjsp_setzero_v2r8();
166         fix1             = _fjsp_setzero_v2r8();
167         fiy1             = _fjsp_setzero_v2r8();
168         fiz1             = _fjsp_setzero_v2r8();
169         fix2             = _fjsp_setzero_v2r8();
170         fiy2             = _fjsp_setzero_v2r8();
171         fiz2             = _fjsp_setzero_v2r8();
172
173         /* Reset potential sums */
174         velecsum         = _fjsp_setzero_v2r8();
175         vvdwsum          = _fjsp_setzero_v2r8();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186
187             /* load j atom coordinates */
188             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _fjsp_sub_v2r8(ix0,jx0);
193             dy00             = _fjsp_sub_v2r8(iy0,jy0);
194             dz00             = _fjsp_sub_v2r8(iz0,jz0);
195             dx10             = _fjsp_sub_v2r8(ix1,jx0);
196             dy10             = _fjsp_sub_v2r8(iy1,jy0);
197             dz10             = _fjsp_sub_v2r8(iz1,jz0);
198             dx20             = _fjsp_sub_v2r8(ix2,jx0);
199             dy20             = _fjsp_sub_v2r8(iy2,jy0);
200             dz20             = _fjsp_sub_v2r8(iz2,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
204             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
205             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
206
207             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
208             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
209             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
210
211             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
212             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
213             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219
220             fjx0             = _fjsp_setzero_v2r8();
221             fjy0             = _fjsp_setzero_v2r8();
222             fjz0             = _fjsp_setzero_v2r8();
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _fjsp_mul_v2r8(iq0,jq0);
232             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
233                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
234
235             /* EWALD ELECTROSTATICS */
236
237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
239             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
240             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
241             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
242
243             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
244             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
245             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
246             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
247             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
248             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
249             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
250             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
251             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
252             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
253
254             /* LENNARD-JONES DISPERSION/REPULSION */
255
256             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
257             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
258             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
259             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
260             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _fjsp_add_v2r8(velecsum,velec);
264             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
265
266             fscal            = _fjsp_add_v2r8(felec,fvdw);
267
268             /* Update vectorial force */
269             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
270             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
271             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
272             
273             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
274             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
275             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq10             = _fjsp_mul_v2r8(iq1,jq0);
285
286             /* EWALD ELECTROSTATICS */
287
288             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
289             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
290             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
291             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
292             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
293
294             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
295             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
296             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
297             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
298             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
299             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
300             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
301             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
302             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
303             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _fjsp_add_v2r8(velecsum,velec);
307
308             fscal            = felec;
309
310             /* Update vectorial force */
311             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
312             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
313             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
314             
315             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
316             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
317             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq20             = _fjsp_mul_v2r8(iq2,jq0);
327
328             /* EWALD ELECTROSTATICS */
329
330             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
331             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
332             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
333             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
334             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
335
336             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
337             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
338             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
339             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
340             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
341             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
342             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
343             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
344             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
345             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velecsum         = _fjsp_add_v2r8(velecsum,velec);
349
350             fscal            = felec;
351
352             /* Update vectorial force */
353             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
354             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
355             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
356             
357             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
358             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
359             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
360
361             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
362
363             /* Inner loop uses 147 flops */
364         }
365
366         if(jidx<j_index_end)
367         {
368
369             jnrA             = jjnr[jidx];
370             j_coord_offsetA  = DIM*jnrA;
371
372             /* load j atom coordinates */
373             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
374                                               &jx0,&jy0,&jz0);
375
376             /* Calculate displacement vector */
377             dx00             = _fjsp_sub_v2r8(ix0,jx0);
378             dy00             = _fjsp_sub_v2r8(iy0,jy0);
379             dz00             = _fjsp_sub_v2r8(iz0,jz0);
380             dx10             = _fjsp_sub_v2r8(ix1,jx0);
381             dy10             = _fjsp_sub_v2r8(iy1,jy0);
382             dz10             = _fjsp_sub_v2r8(iz1,jz0);
383             dx20             = _fjsp_sub_v2r8(ix2,jx0);
384             dy20             = _fjsp_sub_v2r8(iy2,jy0);
385             dz20             = _fjsp_sub_v2r8(iz2,jz0);
386
387             /* Calculate squared distance and things based on it */
388             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
389             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
390             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
391
392             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
393             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
394             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
395
396             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
397             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
398             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
399
400             /* Load parameters for j particles */
401             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
402             vdwjidx0A        = 2*vdwtype[jnrA+0];
403
404             fjx0             = _fjsp_setzero_v2r8();
405             fjy0             = _fjsp_setzero_v2r8();
406             fjz0             = _fjsp_setzero_v2r8();
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
413
414             /* Compute parameters for interactions between i and j atoms */
415             qq00             = _fjsp_mul_v2r8(iq0,jq0);
416             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
417
418             /* EWALD ELECTROSTATICS */
419
420             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
421             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
422             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
423             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
424             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
425
426             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
427             ewtabD           = _fjsp_setzero_v2r8();
428             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
429             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
430             ewtabFn          = _fjsp_setzero_v2r8();
431             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
432             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
433             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
434             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
435             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
436
437             /* LENNARD-JONES DISPERSION/REPULSION */
438
439             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
440             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
441             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
442             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
443             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
444
445             /* Update potential sum for this i atom from the interaction with this j atom. */
446             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
447             velecsum         = _fjsp_add_v2r8(velecsum,velec);
448             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
449             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
450
451             fscal            = _fjsp_add_v2r8(felec,fvdw);
452
453             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
454
455             /* Update vectorial force */
456             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
457             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
458             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
459             
460             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
461             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
462             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq10             = _fjsp_mul_v2r8(iq1,jq0);
472
473             /* EWALD ELECTROSTATICS */
474
475             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
476             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
477             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
478             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
479             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
480
481             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
482             ewtabD           = _fjsp_setzero_v2r8();
483             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
484             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
485             ewtabFn          = _fjsp_setzero_v2r8();
486             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
487             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
488             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
489             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
490             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
491
492             /* Update potential sum for this i atom from the interaction with this j atom. */
493             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
494             velecsum         = _fjsp_add_v2r8(velecsum,velec);
495
496             fscal            = felec;
497
498             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
499
500             /* Update vectorial force */
501             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
502             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
503             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
504             
505             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
506             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
507             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
514
515             /* Compute parameters for interactions between i and j atoms */
516             qq20             = _fjsp_mul_v2r8(iq2,jq0);
517
518             /* EWALD ELECTROSTATICS */
519
520             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
521             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
522             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
523             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
524             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
525
526             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
527             ewtabD           = _fjsp_setzero_v2r8();
528             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
529             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
530             ewtabFn          = _fjsp_setzero_v2r8();
531             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
532             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
533             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
534             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
535             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
539             velecsum         = _fjsp_add_v2r8(velecsum,velec);
540
541             fscal            = felec;
542
543             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
544
545             /* Update vectorial force */
546             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
547             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
548             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
549             
550             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
551             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
552             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
553
554             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
555
556             /* Inner loop uses 147 flops */
557         }
558
559         /* End of innermost loop */
560
561         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
562                                               f+i_coord_offset,fshift+i_shift_offset);
563
564         ggid                        = gid[iidx];
565         /* Update potential energies */
566         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
567         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
568
569         /* Increment number of inner iterations */
570         inneriter                  += j_index_end - j_index_start;
571
572         /* Outer loop uses 20 flops */
573     }
574
575     /* Increment number of outer iterations */
576     outeriter        += nri;
577
578     /* Update outer/inner flops */
579
580     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
581 }
582 /*
583  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sparc64_hpc_ace_double
584  * Electrostatics interaction: Ewald
585  * VdW interaction:            LennardJones
586  * Geometry:                   Water3-Particle
587  * Calculate force/pot:        Force
588  */
589 void
590 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sparc64_hpc_ace_double
591                     (t_nblist                    * gmx_restrict       nlist,
592                      rvec                        * gmx_restrict          xx,
593                      rvec                        * gmx_restrict          ff,
594                      t_forcerec                  * gmx_restrict          fr,
595                      t_mdatoms                   * gmx_restrict     mdatoms,
596                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
597                      t_nrnb                      * gmx_restrict        nrnb)
598 {
599     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
600      * just 0 for non-waters.
601      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
602      * jnr indices corresponding to data put in the four positions in the SIMD register.
603      */
604     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
605     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
606     int              jnrA,jnrB;
607     int              j_coord_offsetA,j_coord_offsetB;
608     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
609     real             rcutoff_scalar;
610     real             *shiftvec,*fshift,*x,*f;
611     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
612     int              vdwioffset0;
613     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
614     int              vdwioffset1;
615     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
616     int              vdwioffset2;
617     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
618     int              vdwjidx0A,vdwjidx0B;
619     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
620     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
621     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
622     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
623     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
624     real             *charge;
625     int              nvdwtype;
626     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
627     int              *vdwtype;
628     real             *vdwparam;
629     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
630     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
631     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
632     real             *ewtab;
633     _fjsp_v2r8       itab_tmp;
634     _fjsp_v2r8       dummy_mask,cutoff_mask;
635     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
636     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
637     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
638
639     x                = xx[0];
640     f                = ff[0];
641
642     nri              = nlist->nri;
643     iinr             = nlist->iinr;
644     jindex           = nlist->jindex;
645     jjnr             = nlist->jjnr;
646     shiftidx         = nlist->shift;
647     gid              = nlist->gid;
648     shiftvec         = fr->shift_vec[0];
649     fshift           = fr->fshift[0];
650     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
651     charge           = mdatoms->chargeA;
652     nvdwtype         = fr->ntype;
653     vdwparam         = fr->nbfp;
654     vdwtype          = mdatoms->typeA;
655
656     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
657     ewtab            = fr->ic->tabq_coul_F;
658     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
659     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
660
661     /* Setup water-specific parameters */
662     inr              = nlist->iinr[0];
663     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
664     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
665     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
666     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
667
668     /* Avoid stupid compiler warnings */
669     jnrA = jnrB = 0;
670     j_coord_offsetA = 0;
671     j_coord_offsetB = 0;
672
673     outeriter        = 0;
674     inneriter        = 0;
675
676     /* Start outer loop over neighborlists */
677     for(iidx=0; iidx<nri; iidx++)
678     {
679         /* Load shift vector for this list */
680         i_shift_offset   = DIM*shiftidx[iidx];
681
682         /* Load limits for loop over neighbors */
683         j_index_start    = jindex[iidx];
684         j_index_end      = jindex[iidx+1];
685
686         /* Get outer coordinate index */
687         inr              = iinr[iidx];
688         i_coord_offset   = DIM*inr;
689
690         /* Load i particle coords and add shift vector */
691         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
692                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
693
694         fix0             = _fjsp_setzero_v2r8();
695         fiy0             = _fjsp_setzero_v2r8();
696         fiz0             = _fjsp_setzero_v2r8();
697         fix1             = _fjsp_setzero_v2r8();
698         fiy1             = _fjsp_setzero_v2r8();
699         fiz1             = _fjsp_setzero_v2r8();
700         fix2             = _fjsp_setzero_v2r8();
701         fiy2             = _fjsp_setzero_v2r8();
702         fiz2             = _fjsp_setzero_v2r8();
703
704         /* Start inner kernel loop */
705         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
706         {
707
708             /* Get j neighbor index, and coordinate index */
709             jnrA             = jjnr[jidx];
710             jnrB             = jjnr[jidx+1];
711             j_coord_offsetA  = DIM*jnrA;
712             j_coord_offsetB  = DIM*jnrB;
713
714             /* load j atom coordinates */
715             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
716                                               &jx0,&jy0,&jz0);
717
718             /* Calculate displacement vector */
719             dx00             = _fjsp_sub_v2r8(ix0,jx0);
720             dy00             = _fjsp_sub_v2r8(iy0,jy0);
721             dz00             = _fjsp_sub_v2r8(iz0,jz0);
722             dx10             = _fjsp_sub_v2r8(ix1,jx0);
723             dy10             = _fjsp_sub_v2r8(iy1,jy0);
724             dz10             = _fjsp_sub_v2r8(iz1,jz0);
725             dx20             = _fjsp_sub_v2r8(ix2,jx0);
726             dy20             = _fjsp_sub_v2r8(iy2,jy0);
727             dz20             = _fjsp_sub_v2r8(iz2,jz0);
728
729             /* Calculate squared distance and things based on it */
730             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
731             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
732             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
733
734             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
735             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
736             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
737
738             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
739             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
740             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
741
742             /* Load parameters for j particles */
743             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
744             vdwjidx0A        = 2*vdwtype[jnrA+0];
745             vdwjidx0B        = 2*vdwtype[jnrB+0];
746
747             fjx0             = _fjsp_setzero_v2r8();
748             fjy0             = _fjsp_setzero_v2r8();
749             fjz0             = _fjsp_setzero_v2r8();
750
751             /**************************
752              * CALCULATE INTERACTIONS *
753              **************************/
754
755             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
756
757             /* Compute parameters for interactions between i and j atoms */
758             qq00             = _fjsp_mul_v2r8(iq0,jq0);
759             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
760                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
761
762             /* EWALD ELECTROSTATICS */
763
764             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
765             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
766             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
767             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
768             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
769
770             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
771                                          &ewtabF,&ewtabFn);
772             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
773             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
774
775             /* LENNARD-JONES DISPERSION/REPULSION */
776
777             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
778             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
779
780             fscal            = _fjsp_add_v2r8(felec,fvdw);
781
782             /* Update vectorial force */
783             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
784             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
785             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
786             
787             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
788             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
789             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
796
797             /* Compute parameters for interactions between i and j atoms */
798             qq10             = _fjsp_mul_v2r8(iq1,jq0);
799
800             /* EWALD ELECTROSTATICS */
801
802             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
803             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
804             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
805             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
806             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
807
808             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
809                                          &ewtabF,&ewtabFn);
810             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
811             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
812
813             fscal            = felec;
814
815             /* Update vectorial force */
816             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
817             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
818             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
819             
820             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
821             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
822             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
823
824             /**************************
825              * CALCULATE INTERACTIONS *
826              **************************/
827
828             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
829
830             /* Compute parameters for interactions between i and j atoms */
831             qq20             = _fjsp_mul_v2r8(iq2,jq0);
832
833             /* EWALD ELECTROSTATICS */
834
835             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
836             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
837             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
838             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
839             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
840
841             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
842                                          &ewtabF,&ewtabFn);
843             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
844             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
845
846             fscal            = felec;
847
848             /* Update vectorial force */
849             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
850             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
851             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
852             
853             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
854             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
855             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
856
857             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
858
859             /* Inner loop uses 127 flops */
860         }
861
862         if(jidx<j_index_end)
863         {
864
865             jnrA             = jjnr[jidx];
866             j_coord_offsetA  = DIM*jnrA;
867
868             /* load j atom coordinates */
869             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
870                                               &jx0,&jy0,&jz0);
871
872             /* Calculate displacement vector */
873             dx00             = _fjsp_sub_v2r8(ix0,jx0);
874             dy00             = _fjsp_sub_v2r8(iy0,jy0);
875             dz00             = _fjsp_sub_v2r8(iz0,jz0);
876             dx10             = _fjsp_sub_v2r8(ix1,jx0);
877             dy10             = _fjsp_sub_v2r8(iy1,jy0);
878             dz10             = _fjsp_sub_v2r8(iz1,jz0);
879             dx20             = _fjsp_sub_v2r8(ix2,jx0);
880             dy20             = _fjsp_sub_v2r8(iy2,jy0);
881             dz20             = _fjsp_sub_v2r8(iz2,jz0);
882
883             /* Calculate squared distance and things based on it */
884             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
885             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
886             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
887
888             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
889             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
890             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
891
892             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
893             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
894             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
895
896             /* Load parameters for j particles */
897             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
898             vdwjidx0A        = 2*vdwtype[jnrA+0];
899
900             fjx0             = _fjsp_setzero_v2r8();
901             fjy0             = _fjsp_setzero_v2r8();
902             fjz0             = _fjsp_setzero_v2r8();
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
909
910             /* Compute parameters for interactions between i and j atoms */
911             qq00             = _fjsp_mul_v2r8(iq0,jq0);
912             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
913
914             /* EWALD ELECTROSTATICS */
915
916             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
917             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
918             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
919             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
920             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
921
922             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
923             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
924             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
925
926             /* LENNARD-JONES DISPERSION/REPULSION */
927
928             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
929             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
930
931             fscal            = _fjsp_add_v2r8(felec,fvdw);
932
933             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
934
935             /* Update vectorial force */
936             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
937             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
938             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
939             
940             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
941             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
942             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq10             = _fjsp_mul_v2r8(iq1,jq0);
952
953             /* EWALD ELECTROSTATICS */
954
955             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
956             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
957             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
958             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
959             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
960
961             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
962             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
963             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
964
965             fscal            = felec;
966
967             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
968
969             /* Update vectorial force */
970             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
971             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
972             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
973             
974             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
975             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
976             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
977
978             /**************************
979              * CALCULATE INTERACTIONS *
980              **************************/
981
982             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
983
984             /* Compute parameters for interactions between i and j atoms */
985             qq20             = _fjsp_mul_v2r8(iq2,jq0);
986
987             /* EWALD ELECTROSTATICS */
988
989             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
990             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
991             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
992             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
993             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
994
995             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
996             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
997             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
998
999             fscal            = felec;
1000
1001             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1002
1003             /* Update vectorial force */
1004             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1005             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1006             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1007             
1008             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1009             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1010             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1011
1012             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1013
1014             /* Inner loop uses 127 flops */
1015         }
1016
1017         /* End of innermost loop */
1018
1019         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1020                                               f+i_coord_offset,fshift+i_shift_offset);
1021
1022         /* Increment number of inner iterations */
1023         inneriter                  += j_index_end - j_index_start;
1024
1025         /* Outer loop uses 18 flops */
1026     }
1027
1028     /* Increment number of outer iterations */
1029     outeriter        += nri;
1030
1031     /* Update outer/inner flops */
1032
1033     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1034 }