fbb693c1603c71ae0a411d628a8d4a763448a511
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     real             *ewtab;
94     _fjsp_v2r8       itab_tmp;
95     _fjsp_v2r8       dummy_mask,cutoff_mask;
96     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
97     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
98     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
99
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
120     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _fjsp_setzero_v2r8();
148         fiy0             = _fjsp_setzero_v2r8();
149         fiz0             = _fjsp_setzero_v2r8();
150
151         /* Load parameters for i particles */
152         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
153         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155         /* Reset potential sums */
156         velecsum         = _fjsp_setzero_v2r8();
157         vvdwsum          = _fjsp_setzero_v2r8();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168
169             /* load j atom coordinates */
170             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _fjsp_sub_v2r8(ix0,jx0);
175             dy00             = _fjsp_sub_v2r8(iy0,jy0);
176             dz00             = _fjsp_sub_v2r8(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
180
181             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
182
183             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
184
185             /* Load parameters for j particles */
186             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
187             vdwjidx0A        = 2*vdwtype[jnrA+0];
188             vdwjidx0B        = 2*vdwtype[jnrB+0];
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
195
196             /* Compute parameters for interactions between i and j atoms */
197             qq00             = _fjsp_mul_v2r8(iq0,jq0);
198             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
199                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
200
201             /* EWALD ELECTROSTATICS */
202
203             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
204             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
205             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
206             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
207             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
208
209             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
210             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
211             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
212             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
213             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
214             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
215             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
216             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
217             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
218             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
219
220             /* LENNARD-JONES DISPERSION/REPULSION */
221
222             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
223             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
224             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
225             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
226             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
227
228             /* Update potential sum for this i atom from the interaction with this j atom. */
229             velecsum         = _fjsp_add_v2r8(velecsum,velec);
230             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
231
232             fscal            = _fjsp_add_v2r8(felec,fvdw);
233
234             /* Update vectorial force */
235             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
236             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
237             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
238             
239             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
240
241             /* Inner loop uses 56 flops */
242         }
243
244         if(jidx<j_index_end)
245         {
246
247             jnrA             = jjnr[jidx];
248             j_coord_offsetA  = DIM*jnrA;
249
250             /* load j atom coordinates */
251             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
252                                               &jx0,&jy0,&jz0);
253
254             /* Calculate displacement vector */
255             dx00             = _fjsp_sub_v2r8(ix0,jx0);
256             dy00             = _fjsp_sub_v2r8(iy0,jy0);
257             dz00             = _fjsp_sub_v2r8(iz0,jz0);
258
259             /* Calculate squared distance and things based on it */
260             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
261
262             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
263
264             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
265
266             /* Load parameters for j particles */
267             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
268             vdwjidx0A        = 2*vdwtype[jnrA+0];
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
275
276             /* Compute parameters for interactions between i and j atoms */
277             qq00             = _fjsp_mul_v2r8(iq0,jq0);
278             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
279                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
280
281             /* EWALD ELECTROSTATICS */
282
283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
285             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
286             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
287             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
288
289             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
290             ewtabD           = _fjsp_setzero_v2r8();
291             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
292             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
293             ewtabFn          = _fjsp_setzero_v2r8();
294             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
295             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
296             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
297             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
298             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
299
300             /* LENNARD-JONES DISPERSION/REPULSION */
301
302             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
303             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
304             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
305             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
306             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
310             velecsum         = _fjsp_add_v2r8(velecsum,velec);
311             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
312             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
313
314             fscal            = _fjsp_add_v2r8(felec,fvdw);
315
316             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
317
318             /* Update vectorial force */
319             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
320             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
321             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
322             
323             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
324
325             /* Inner loop uses 56 flops */
326         }
327
328         /* End of innermost loop */
329
330         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
331                                               f+i_coord_offset,fshift+i_shift_offset);
332
333         ggid                        = gid[iidx];
334         /* Update potential energies */
335         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
336         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
337
338         /* Increment number of inner iterations */
339         inneriter                  += j_index_end - j_index_start;
340
341         /* Outer loop uses 9 flops */
342     }
343
344     /* Increment number of outer iterations */
345     outeriter        += nri;
346
347     /* Update outer/inner flops */
348
349     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
350 }
351 /*
352  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sparc64_hpc_ace_double
353  * Electrostatics interaction: Ewald
354  * VdW interaction:            LennardJones
355  * Geometry:                   Particle-Particle
356  * Calculate force/pot:        Force
357  */
358 void
359 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sparc64_hpc_ace_double
360                     (t_nblist                    * gmx_restrict       nlist,
361                      rvec                        * gmx_restrict          xx,
362                      rvec                        * gmx_restrict          ff,
363                      struct t_forcerec           * gmx_restrict          fr,
364                      t_mdatoms                   * gmx_restrict     mdatoms,
365                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
366                      t_nrnb                      * gmx_restrict        nrnb)
367 {
368     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
369      * just 0 for non-waters.
370      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
371      * jnr indices corresponding to data put in the four positions in the SIMD register.
372      */
373     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
374     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
375     int              jnrA,jnrB;
376     int              j_coord_offsetA,j_coord_offsetB;
377     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
378     real             rcutoff_scalar;
379     real             *shiftvec,*fshift,*x,*f;
380     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
381     int              vdwioffset0;
382     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
383     int              vdwjidx0A,vdwjidx0B;
384     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
385     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
386     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
387     real             *charge;
388     int              nvdwtype;
389     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
390     int              *vdwtype;
391     real             *vdwparam;
392     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
393     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
394     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
395     real             *ewtab;
396     _fjsp_v2r8       itab_tmp;
397     _fjsp_v2r8       dummy_mask,cutoff_mask;
398     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
399     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
400     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
401
402     x                = xx[0];
403     f                = ff[0];
404
405     nri              = nlist->nri;
406     iinr             = nlist->iinr;
407     jindex           = nlist->jindex;
408     jjnr             = nlist->jjnr;
409     shiftidx         = nlist->shift;
410     gid              = nlist->gid;
411     shiftvec         = fr->shift_vec[0];
412     fshift           = fr->fshift[0];
413     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
414     charge           = mdatoms->chargeA;
415     nvdwtype         = fr->ntype;
416     vdwparam         = fr->nbfp;
417     vdwtype          = mdatoms->typeA;
418
419     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
420     ewtab            = fr->ic->tabq_coul_F;
421     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
422     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
423
424     /* Avoid stupid compiler warnings */
425     jnrA = jnrB = 0;
426     j_coord_offsetA = 0;
427     j_coord_offsetB = 0;
428
429     outeriter        = 0;
430     inneriter        = 0;
431
432     /* Start outer loop over neighborlists */
433     for(iidx=0; iidx<nri; iidx++)
434     {
435         /* Load shift vector for this list */
436         i_shift_offset   = DIM*shiftidx[iidx];
437
438         /* Load limits for loop over neighbors */
439         j_index_start    = jindex[iidx];
440         j_index_end      = jindex[iidx+1];
441
442         /* Get outer coordinate index */
443         inr              = iinr[iidx];
444         i_coord_offset   = DIM*inr;
445
446         /* Load i particle coords and add shift vector */
447         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
448
449         fix0             = _fjsp_setzero_v2r8();
450         fiy0             = _fjsp_setzero_v2r8();
451         fiz0             = _fjsp_setzero_v2r8();
452
453         /* Load parameters for i particles */
454         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
455         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
456
457         /* Start inner kernel loop */
458         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
459         {
460
461             /* Get j neighbor index, and coordinate index */
462             jnrA             = jjnr[jidx];
463             jnrB             = jjnr[jidx+1];
464             j_coord_offsetA  = DIM*jnrA;
465             j_coord_offsetB  = DIM*jnrB;
466
467             /* load j atom coordinates */
468             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
469                                               &jx0,&jy0,&jz0);
470
471             /* Calculate displacement vector */
472             dx00             = _fjsp_sub_v2r8(ix0,jx0);
473             dy00             = _fjsp_sub_v2r8(iy0,jy0);
474             dz00             = _fjsp_sub_v2r8(iz0,jz0);
475
476             /* Calculate squared distance and things based on it */
477             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
478
479             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
480
481             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
482
483             /* Load parameters for j particles */
484             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486             vdwjidx0B        = 2*vdwtype[jnrB+0];
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
493
494             /* Compute parameters for interactions between i and j atoms */
495             qq00             = _fjsp_mul_v2r8(iq0,jq0);
496             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
497                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
498
499             /* EWALD ELECTROSTATICS */
500
501             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
502             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
503             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
504             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
505             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
506
507             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
508                                          &ewtabF,&ewtabFn);
509             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
510             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
511
512             /* LENNARD-JONES DISPERSION/REPULSION */
513
514             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
515             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
516
517             fscal            = _fjsp_add_v2r8(felec,fvdw);
518
519             /* Update vectorial force */
520             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
521             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
522             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
523             
524             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
525
526             /* Inner loop uses 46 flops */
527         }
528
529         if(jidx<j_index_end)
530         {
531
532             jnrA             = jjnr[jidx];
533             j_coord_offsetA  = DIM*jnrA;
534
535             /* load j atom coordinates */
536             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
537                                               &jx0,&jy0,&jz0);
538
539             /* Calculate displacement vector */
540             dx00             = _fjsp_sub_v2r8(ix0,jx0);
541             dy00             = _fjsp_sub_v2r8(iy0,jy0);
542             dz00             = _fjsp_sub_v2r8(iz0,jz0);
543
544             /* Calculate squared distance and things based on it */
545             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
546
547             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
548
549             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
550
551             /* Load parameters for j particles */
552             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
553             vdwjidx0A        = 2*vdwtype[jnrA+0];
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq00             = _fjsp_mul_v2r8(iq0,jq0);
563             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
564                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
565
566             /* EWALD ELECTROSTATICS */
567
568             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
569             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
570             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
571             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
572             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
573
574             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
575             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
576             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
577
578             /* LENNARD-JONES DISPERSION/REPULSION */
579
580             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
581             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
582
583             fscal            = _fjsp_add_v2r8(felec,fvdw);
584
585             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
586
587             /* Update vectorial force */
588             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
589             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
590             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
591             
592             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
593
594             /* Inner loop uses 46 flops */
595         }
596
597         /* End of innermost loop */
598
599         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
600                                               f+i_coord_offset,fshift+i_shift_offset);
601
602         /* Increment number of inner iterations */
603         inneriter                  += j_index_end - j_index_start;
604
605         /* Outer loop uses 7 flops */
606     }
607
608     /* Increment number of outer iterations */
609     outeriter        += nri;
610
611     /* Update outer/inner flops */
612
613     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);
614 }