Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Water4-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwioffset3;
88     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx0A,vdwjidx0B;
90     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
95     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
102     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
103     _fjsp_v2r8           c6grid_00;
104     _fjsp_v2r8           c6grid_10;
105     _fjsp_v2r8           c6grid_20;
106     _fjsp_v2r8           c6grid_30;
107     real                 *vdwgridparam;
108     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
110     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
111     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     _fjsp_v2r8       itab_tmp;
114     _fjsp_v2r8       dummy_mask,cutoff_mask;
115     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
116     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
117     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
118
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
137     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
138     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
139
140     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
143     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
148     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
149     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _fjsp_setzero_v2r8();
179         fiy0             = _fjsp_setzero_v2r8();
180         fiz0             = _fjsp_setzero_v2r8();
181         fix1             = _fjsp_setzero_v2r8();
182         fiy1             = _fjsp_setzero_v2r8();
183         fiz1             = _fjsp_setzero_v2r8();
184         fix2             = _fjsp_setzero_v2r8();
185         fiy2             = _fjsp_setzero_v2r8();
186         fiz2             = _fjsp_setzero_v2r8();
187         fix3             = _fjsp_setzero_v2r8();
188         fiy3             = _fjsp_setzero_v2r8();
189         fiz3             = _fjsp_setzero_v2r8();
190
191         /* Reset potential sums */
192         velecsum         = _fjsp_setzero_v2r8();
193         vvdwsum          = _fjsp_setzero_v2r8();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204
205             /* load j atom coordinates */
206             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _fjsp_sub_v2r8(ix0,jx0);
211             dy00             = _fjsp_sub_v2r8(iy0,jy0);
212             dz00             = _fjsp_sub_v2r8(iz0,jz0);
213             dx10             = _fjsp_sub_v2r8(ix1,jx0);
214             dy10             = _fjsp_sub_v2r8(iy1,jy0);
215             dz10             = _fjsp_sub_v2r8(iz1,jz0);
216             dx20             = _fjsp_sub_v2r8(ix2,jx0);
217             dy20             = _fjsp_sub_v2r8(iy2,jy0);
218             dz20             = _fjsp_sub_v2r8(iz2,jz0);
219             dx30             = _fjsp_sub_v2r8(ix3,jx0);
220             dy30             = _fjsp_sub_v2r8(iy3,jy0);
221             dz30             = _fjsp_sub_v2r8(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
225             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
226             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
227             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
228
229             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
230             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
231             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
232             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
233
234             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
235             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
236             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
237             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243
244             fjx0             = _fjsp_setzero_v2r8();
245             fjy0             = _fjsp_setzero_v2r8();
246             fjz0             = _fjsp_setzero_v2r8();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
257
258             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
259                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
260
261             /* Analytical LJ-PME */
262             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
263             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
264             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
265             exponent         = gmx_simd_exp_d(ewcljrsq);
266             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
267             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
268             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
269             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
270             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
271             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
272             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
273             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
277
278             fscal            = fvdw;
279
280             /* Update vectorial force */
281             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
282             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
283             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
284             
285             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
286             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
287             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
294
295             /* Compute parameters for interactions between i and j atoms */
296             qq10             = _fjsp_mul_v2r8(iq1,jq0);
297
298             /* EWALD ELECTROSTATICS */
299
300             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
301             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
302             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
303             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
304             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
305
306             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
307             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
308             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
309             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
310             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
311             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
312             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
313             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
314             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
315             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _fjsp_add_v2r8(velecsum,velec);
319
320             fscal            = felec;
321
322             /* Update vectorial force */
323             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
324             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
325             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
326             
327             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
328             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
329             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _fjsp_mul_v2r8(iq2,jq0);
339
340             /* EWALD ELECTROSTATICS */
341
342             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
343             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
344             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
345             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
346             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
347
348             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
349             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
350             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
351             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
352             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
353             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
354             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
355             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
356             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
357             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _fjsp_add_v2r8(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Update vectorial force */
365             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
366             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
367             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
368             
369             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
370             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
371             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq30             = _fjsp_mul_v2r8(iq3,jq0);
381
382             /* EWALD ELECTROSTATICS */
383
384             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
385             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
386             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
387             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
388             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
389
390             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
391             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
392             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
393             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
394             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
395             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
396             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
397             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
398             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
399             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velecsum         = _fjsp_add_v2r8(velecsum,velec);
403
404             fscal            = felec;
405
406             /* Update vectorial force */
407             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
408             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
409             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
410             
411             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
412             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
413             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
414
415             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
416
417             /* Inner loop uses 185 flops */
418         }
419
420         if(jidx<j_index_end)
421         {
422
423             jnrA             = jjnr[jidx];
424             j_coord_offsetA  = DIM*jnrA;
425
426             /* load j atom coordinates */
427             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
428                                               &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx00             = _fjsp_sub_v2r8(ix0,jx0);
432             dy00             = _fjsp_sub_v2r8(iy0,jy0);
433             dz00             = _fjsp_sub_v2r8(iz0,jz0);
434             dx10             = _fjsp_sub_v2r8(ix1,jx0);
435             dy10             = _fjsp_sub_v2r8(iy1,jy0);
436             dz10             = _fjsp_sub_v2r8(iz1,jz0);
437             dx20             = _fjsp_sub_v2r8(ix2,jx0);
438             dy20             = _fjsp_sub_v2r8(iy2,jy0);
439             dz20             = _fjsp_sub_v2r8(iz2,jz0);
440             dx30             = _fjsp_sub_v2r8(ix3,jx0);
441             dy30             = _fjsp_sub_v2r8(iy3,jy0);
442             dz30             = _fjsp_sub_v2r8(iz3,jz0);
443
444             /* Calculate squared distance and things based on it */
445             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
446             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
447             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
448             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
449
450             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
451             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
452             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
453             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
454
455             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
456             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
457             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
458             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
459
460             /* Load parameters for j particles */
461             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463
464             fjx0             = _fjsp_setzero_v2r8();
465             fjy0             = _fjsp_setzero_v2r8();
466             fjz0             = _fjsp_setzero_v2r8();
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
473
474             /* Compute parameters for interactions between i and j atoms */
475             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
476                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
477
478             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
479                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
480
481             /* Analytical LJ-PME */
482             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
483             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
484             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
485             exponent         = gmx_simd_exp_d(ewcljrsq);
486             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
487             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
488             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
489             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
490             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
491             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
492             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
493             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
494
495             /* Update potential sum for this i atom from the interaction with this j atom. */
496             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
497             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
498
499             fscal            = fvdw;
500
501             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
502
503             /* Update vectorial force */
504             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
505             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
506             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
507             
508             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
509             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
510             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
517
518             /* Compute parameters for interactions between i and j atoms */
519             qq10             = _fjsp_mul_v2r8(iq1,jq0);
520
521             /* EWALD ELECTROSTATICS */
522
523             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
524             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
525             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
526             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
527             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
528
529             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
530             ewtabD           = _fjsp_setzero_v2r8();
531             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
532             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
533             ewtabFn          = _fjsp_setzero_v2r8();
534             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
535             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
536             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
537             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
538             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
539
540             /* Update potential sum for this i atom from the interaction with this j atom. */
541             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
542             velecsum         = _fjsp_add_v2r8(velecsum,velec);
543
544             fscal            = felec;
545
546             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
547
548             /* Update vectorial force */
549             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
550             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
551             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
552             
553             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
554             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
555             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
562
563             /* Compute parameters for interactions between i and j atoms */
564             qq20             = _fjsp_mul_v2r8(iq2,jq0);
565
566             /* EWALD ELECTROSTATICS */
567
568             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
569             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
570             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
571             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
572             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
573
574             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
575             ewtabD           = _fjsp_setzero_v2r8();
576             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
577             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
578             ewtabFn          = _fjsp_setzero_v2r8();
579             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
580             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
581             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
582             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
583             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
584
585             /* Update potential sum for this i atom from the interaction with this j atom. */
586             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
587             velecsum         = _fjsp_add_v2r8(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
592
593             /* Update vectorial force */
594             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
595             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
596             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
597             
598             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
599             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
600             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq30             = _fjsp_mul_v2r8(iq3,jq0);
610
611             /* EWALD ELECTROSTATICS */
612
613             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
614             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
615             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
616             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
617             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
618
619             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
620             ewtabD           = _fjsp_setzero_v2r8();
621             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
622             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
623             ewtabFn          = _fjsp_setzero_v2r8();
624             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
625             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
626             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
627             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
628             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
629
630             /* Update potential sum for this i atom from the interaction with this j atom. */
631             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
632             velecsum         = _fjsp_add_v2r8(velecsum,velec);
633
634             fscal            = felec;
635
636             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
637
638             /* Update vectorial force */
639             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
640             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
641             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
642             
643             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
644             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
645             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
646
647             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
648
649             /* Inner loop uses 185 flops */
650         }
651
652         /* End of innermost loop */
653
654         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
655                                               f+i_coord_offset,fshift+i_shift_offset);
656
657         ggid                        = gid[iidx];
658         /* Update potential energies */
659         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
660         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
661
662         /* Increment number of inner iterations */
663         inneriter                  += j_index_end - j_index_start;
664
665         /* Outer loop uses 26 flops */
666     }
667
668     /* Increment number of outer iterations */
669     outeriter        += nri;
670
671     /* Update outer/inner flops */
672
673     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*185);
674 }
675 /*
676  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sparc64_hpc_ace_double
677  * Electrostatics interaction: Ewald
678  * VdW interaction:            LJEwald
679  * Geometry:                   Water4-Particle
680  * Calculate force/pot:        Force
681  */
682 void
683 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sparc64_hpc_ace_double
684                     (t_nblist                    * gmx_restrict       nlist,
685                      rvec                        * gmx_restrict          xx,
686                      rvec                        * gmx_restrict          ff,
687                      t_forcerec                  * gmx_restrict          fr,
688                      t_mdatoms                   * gmx_restrict     mdatoms,
689                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
690                      t_nrnb                      * gmx_restrict        nrnb)
691 {
692     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
693      * just 0 for non-waters.
694      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
695      * jnr indices corresponding to data put in the four positions in the SIMD register.
696      */
697     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
698     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
699     int              jnrA,jnrB;
700     int              j_coord_offsetA,j_coord_offsetB;
701     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
702     real             rcutoff_scalar;
703     real             *shiftvec,*fshift,*x,*f;
704     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
705     int              vdwioffset0;
706     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
707     int              vdwioffset1;
708     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
709     int              vdwioffset2;
710     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
711     int              vdwioffset3;
712     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
713     int              vdwjidx0A,vdwjidx0B;
714     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
715     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
716     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
717     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
718     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
719     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
720     real             *charge;
721     int              nvdwtype;
722     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
723     int              *vdwtype;
724     real             *vdwparam;
725     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
726     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
727     _fjsp_v2r8           c6grid_00;
728     _fjsp_v2r8           c6grid_10;
729     _fjsp_v2r8           c6grid_20;
730     _fjsp_v2r8           c6grid_30;
731     real                 *vdwgridparam;
732     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
733     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
734     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
735     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
736     real             *ewtab;
737     _fjsp_v2r8       itab_tmp;
738     _fjsp_v2r8       dummy_mask,cutoff_mask;
739     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
740     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
741     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
742
743     x                = xx[0];
744     f                = ff[0];
745
746     nri              = nlist->nri;
747     iinr             = nlist->iinr;
748     jindex           = nlist->jindex;
749     jjnr             = nlist->jjnr;
750     shiftidx         = nlist->shift;
751     gid              = nlist->gid;
752     shiftvec         = fr->shift_vec[0];
753     fshift           = fr->fshift[0];
754     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
755     charge           = mdatoms->chargeA;
756     nvdwtype         = fr->ntype;
757     vdwparam         = fr->nbfp;
758     vdwtype          = mdatoms->typeA;
759     vdwgridparam     = fr->ljpme_c6grid;
760     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
761     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
762     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
763
764     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
765     ewtab            = fr->ic->tabq_coul_F;
766     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
767     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
768
769     /* Setup water-specific parameters */
770     inr              = nlist->iinr[0];
771     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
772     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
773     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
774     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
775
776     /* Avoid stupid compiler warnings */
777     jnrA = jnrB = 0;
778     j_coord_offsetA = 0;
779     j_coord_offsetB = 0;
780
781     outeriter        = 0;
782     inneriter        = 0;
783
784     /* Start outer loop over neighborlists */
785     for(iidx=0; iidx<nri; iidx++)
786     {
787         /* Load shift vector for this list */
788         i_shift_offset   = DIM*shiftidx[iidx];
789
790         /* Load limits for loop over neighbors */
791         j_index_start    = jindex[iidx];
792         j_index_end      = jindex[iidx+1];
793
794         /* Get outer coordinate index */
795         inr              = iinr[iidx];
796         i_coord_offset   = DIM*inr;
797
798         /* Load i particle coords and add shift vector */
799         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
800                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
801
802         fix0             = _fjsp_setzero_v2r8();
803         fiy0             = _fjsp_setzero_v2r8();
804         fiz0             = _fjsp_setzero_v2r8();
805         fix1             = _fjsp_setzero_v2r8();
806         fiy1             = _fjsp_setzero_v2r8();
807         fiz1             = _fjsp_setzero_v2r8();
808         fix2             = _fjsp_setzero_v2r8();
809         fiy2             = _fjsp_setzero_v2r8();
810         fiz2             = _fjsp_setzero_v2r8();
811         fix3             = _fjsp_setzero_v2r8();
812         fiy3             = _fjsp_setzero_v2r8();
813         fiz3             = _fjsp_setzero_v2r8();
814
815         /* Start inner kernel loop */
816         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
817         {
818
819             /* Get j neighbor index, and coordinate index */
820             jnrA             = jjnr[jidx];
821             jnrB             = jjnr[jidx+1];
822             j_coord_offsetA  = DIM*jnrA;
823             j_coord_offsetB  = DIM*jnrB;
824
825             /* load j atom coordinates */
826             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
827                                               &jx0,&jy0,&jz0);
828
829             /* Calculate displacement vector */
830             dx00             = _fjsp_sub_v2r8(ix0,jx0);
831             dy00             = _fjsp_sub_v2r8(iy0,jy0);
832             dz00             = _fjsp_sub_v2r8(iz0,jz0);
833             dx10             = _fjsp_sub_v2r8(ix1,jx0);
834             dy10             = _fjsp_sub_v2r8(iy1,jy0);
835             dz10             = _fjsp_sub_v2r8(iz1,jz0);
836             dx20             = _fjsp_sub_v2r8(ix2,jx0);
837             dy20             = _fjsp_sub_v2r8(iy2,jy0);
838             dz20             = _fjsp_sub_v2r8(iz2,jz0);
839             dx30             = _fjsp_sub_v2r8(ix3,jx0);
840             dy30             = _fjsp_sub_v2r8(iy3,jy0);
841             dz30             = _fjsp_sub_v2r8(iz3,jz0);
842
843             /* Calculate squared distance and things based on it */
844             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
845             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
846             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
847             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
848
849             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
850             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
851             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
852             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
853
854             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
855             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
856             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
857             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
858
859             /* Load parameters for j particles */
860             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
861             vdwjidx0A        = 2*vdwtype[jnrA+0];
862             vdwjidx0B        = 2*vdwtype[jnrB+0];
863
864             fjx0             = _fjsp_setzero_v2r8();
865             fjy0             = _fjsp_setzero_v2r8();
866             fjz0             = _fjsp_setzero_v2r8();
867
868             /**************************
869              * CALCULATE INTERACTIONS *
870              **************************/
871
872             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
873
874             /* Compute parameters for interactions between i and j atoms */
875             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
876                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
877
878             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
879                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
880
881             /* Analytical LJ-PME */
882             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
883             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
884             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
885             exponent         = gmx_simd_exp_d(ewcljrsq);
886             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
887             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
888             /* f6A = 6 * C6grid * (1 - poly) */
889             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
890             /* f6B = C6grid * exponent * beta^6 */
891             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
892             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
893             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
894
895             fscal            = fvdw;
896
897             /* Update vectorial force */
898             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
899             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
900             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
901             
902             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
903             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
904             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
905
906             /**************************
907              * CALCULATE INTERACTIONS *
908              **************************/
909
910             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
911
912             /* Compute parameters for interactions between i and j atoms */
913             qq10             = _fjsp_mul_v2r8(iq1,jq0);
914
915             /* EWALD ELECTROSTATICS */
916
917             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
918             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
919             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
920             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
921             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
922
923             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
924                                          &ewtabF,&ewtabFn);
925             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
926             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
927
928             fscal            = felec;
929
930             /* Update vectorial force */
931             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
932             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
933             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
934             
935             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
936             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
937             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
944
945             /* Compute parameters for interactions between i and j atoms */
946             qq20             = _fjsp_mul_v2r8(iq2,jq0);
947
948             /* EWALD ELECTROSTATICS */
949
950             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
951             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
952             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
953             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
954             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
955
956             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
957                                          &ewtabF,&ewtabFn);
958             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
959             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
960
961             fscal            = felec;
962
963             /* Update vectorial force */
964             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
965             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
966             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
967             
968             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
969             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
970             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
971
972             /**************************
973              * CALCULATE INTERACTIONS *
974              **************************/
975
976             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
977
978             /* Compute parameters for interactions between i and j atoms */
979             qq30             = _fjsp_mul_v2r8(iq3,jq0);
980
981             /* EWALD ELECTROSTATICS */
982
983             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
984             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
985             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
986             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
987             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
988
989             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
990                                          &ewtabF,&ewtabFn);
991             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
992             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
993
994             fscal            = felec;
995
996             /* Update vectorial force */
997             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
998             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
999             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1000             
1001             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1002             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1003             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1004
1005             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1006
1007             /* Inner loop uses 168 flops */
1008         }
1009
1010         if(jidx<j_index_end)
1011         {
1012
1013             jnrA             = jjnr[jidx];
1014             j_coord_offsetA  = DIM*jnrA;
1015
1016             /* load j atom coordinates */
1017             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1018                                               &jx0,&jy0,&jz0);
1019
1020             /* Calculate displacement vector */
1021             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1022             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1023             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1024             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1025             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1026             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1027             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1028             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1029             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1030             dx30             = _fjsp_sub_v2r8(ix3,jx0);
1031             dy30             = _fjsp_sub_v2r8(iy3,jy0);
1032             dz30             = _fjsp_sub_v2r8(iz3,jz0);
1033
1034             /* Calculate squared distance and things based on it */
1035             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1036             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1037             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1038             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
1039
1040             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1041             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1042             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1043             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
1044
1045             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1046             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1047             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1048             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
1049
1050             /* Load parameters for j particles */
1051             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1052             vdwjidx0A        = 2*vdwtype[jnrA+0];
1053
1054             fjx0             = _fjsp_setzero_v2r8();
1055             fjy0             = _fjsp_setzero_v2r8();
1056             fjz0             = _fjsp_setzero_v2r8();
1057
1058             /**************************
1059              * CALCULATE INTERACTIONS *
1060              **************************/
1061
1062             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1063
1064             /* Compute parameters for interactions between i and j atoms */
1065             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1066                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1067
1068             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
1069                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
1070
1071             /* Analytical LJ-PME */
1072             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1073             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
1074             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
1075             exponent         = gmx_simd_exp_d(ewcljrsq);
1076             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1077             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
1078             /* f6A = 6 * C6grid * (1 - poly) */
1079             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
1080             /* f6B = C6grid * exponent * beta^6 */
1081             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
1082             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1083             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1084
1085             fscal            = fvdw;
1086
1087             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1088
1089             /* Update vectorial force */
1090             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1091             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1092             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1093             
1094             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1095             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1096             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1097
1098             /**************************
1099              * CALCULATE INTERACTIONS *
1100              **************************/
1101
1102             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1106
1107             /* EWALD ELECTROSTATICS */
1108
1109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1111             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1112             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1113             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1114
1115             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1116             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1117             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1118
1119             fscal            = felec;
1120
1121             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1122
1123             /* Update vectorial force */
1124             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1125             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1126             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1127             
1128             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1129             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1130             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1137
1138             /* Compute parameters for interactions between i and j atoms */
1139             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1140
1141             /* EWALD ELECTROSTATICS */
1142
1143             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1144             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1145             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1146             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1147             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1148
1149             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1150             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1151             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1152
1153             fscal            = felec;
1154
1155             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1156
1157             /* Update vectorial force */
1158             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1159             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1160             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1161             
1162             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1163             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1164             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1165
1166             /**************************
1167              * CALCULATE INTERACTIONS *
1168              **************************/
1169
1170             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1171
1172             /* Compute parameters for interactions between i and j atoms */
1173             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1174
1175             /* EWALD ELECTROSTATICS */
1176
1177             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1178             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1179             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1180             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1181             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1182
1183             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1184             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1185             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1186
1187             fscal            = felec;
1188
1189             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1190
1191             /* Update vectorial force */
1192             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1193             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1194             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1195             
1196             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1197             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1198             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1199
1200             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1201
1202             /* Inner loop uses 168 flops */
1203         }
1204
1205         /* End of innermost loop */
1206
1207         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1208                                               f+i_coord_offset,fshift+i_shift_offset);
1209
1210         /* Increment number of inner iterations */
1211         inneriter                  += j_index_end - j_index_start;
1212
1213         /* Outer loop uses 24 flops */
1214     }
1215
1216     /* Increment number of outer iterations */
1217     outeriter        += nri;
1218
1219     /* Update outer/inner flops */
1220
1221     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*168);
1222 }