193ab174c89c6ba802f5d5582af7d9c490fdf0b8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Water4-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwioffset3;
88     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx0A,vdwjidx0B;
90     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
95     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
102     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
103     _fjsp_v2r8           c6grid_00;
104     _fjsp_v2r8           c6grid_10;
105     _fjsp_v2r8           c6grid_20;
106     _fjsp_v2r8           c6grid_30;
107     real                 *vdwgridparam;
108     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
110     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
111     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     _fjsp_v2r8       itab_tmp;
114     _fjsp_v2r8       dummy_mask,cutoff_mask;
115     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
116     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
117     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
118
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
137     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
138     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
139
140     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
143     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
148     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
149     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _fjsp_setzero_v2r8();
179         fiy0             = _fjsp_setzero_v2r8();
180         fiz0             = _fjsp_setzero_v2r8();
181         fix1             = _fjsp_setzero_v2r8();
182         fiy1             = _fjsp_setzero_v2r8();
183         fiz1             = _fjsp_setzero_v2r8();
184         fix2             = _fjsp_setzero_v2r8();
185         fiy2             = _fjsp_setzero_v2r8();
186         fiz2             = _fjsp_setzero_v2r8();
187         fix3             = _fjsp_setzero_v2r8();
188         fiy3             = _fjsp_setzero_v2r8();
189         fiz3             = _fjsp_setzero_v2r8();
190
191         /* Reset potential sums */
192         velecsum         = _fjsp_setzero_v2r8();
193         vvdwsum          = _fjsp_setzero_v2r8();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204
205             /* load j atom coordinates */
206             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _fjsp_sub_v2r8(ix0,jx0);
211             dy00             = _fjsp_sub_v2r8(iy0,jy0);
212             dz00             = _fjsp_sub_v2r8(iz0,jz0);
213             dx10             = _fjsp_sub_v2r8(ix1,jx0);
214             dy10             = _fjsp_sub_v2r8(iy1,jy0);
215             dz10             = _fjsp_sub_v2r8(iz1,jz0);
216             dx20             = _fjsp_sub_v2r8(ix2,jx0);
217             dy20             = _fjsp_sub_v2r8(iy2,jy0);
218             dz20             = _fjsp_sub_v2r8(iz2,jz0);
219             dx30             = _fjsp_sub_v2r8(ix3,jx0);
220             dy30             = _fjsp_sub_v2r8(iy3,jy0);
221             dz30             = _fjsp_sub_v2r8(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
225             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
226             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
227             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
228
229             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
230             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
231             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
232             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
233
234             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
235             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
236             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
237             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243
244             fjx0             = _fjsp_setzero_v2r8();
245             fjy0             = _fjsp_setzero_v2r8();
246             fjz0             = _fjsp_setzero_v2r8();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
257
258             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
259                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
260
261             /* Analytical LJ-PME */
262             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
263             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
264             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
265             exponent         = gmx_simd_exp_d(-ewcljrsq);
266             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
267             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
268             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
269             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
270             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
271             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
272             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
273             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
277
278             fscal            = fvdw;
279
280             /* Update vectorial force */
281             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
282             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
283             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
284             
285             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
286             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
287             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
294
295             /* Compute parameters for interactions between i and j atoms */
296             qq10             = _fjsp_mul_v2r8(iq1,jq0);
297
298             /* EWALD ELECTROSTATICS */
299
300             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
301             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
302             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
303             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
304             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
305
306             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
307             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
308             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
309             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
310             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
311             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
312             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
313             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
314             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
315             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _fjsp_add_v2r8(velecsum,velec);
319
320             fscal            = felec;
321
322             /* Update vectorial force */
323             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
324             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
325             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
326             
327             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
328             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
329             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _fjsp_mul_v2r8(iq2,jq0);
339
340             /* EWALD ELECTROSTATICS */
341
342             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
343             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
344             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
345             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
346             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
347
348             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
349             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
350             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
351             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
352             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
353             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
354             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
355             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
356             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
357             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _fjsp_add_v2r8(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Update vectorial force */
365             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
366             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
367             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
368             
369             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
370             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
371             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq30             = _fjsp_mul_v2r8(iq3,jq0);
381
382             /* EWALD ELECTROSTATICS */
383
384             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
385             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
386             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
387             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
388             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
389
390             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
391             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
392             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
393             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
394             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
395             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
396             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
397             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
398             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
399             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velecsum         = _fjsp_add_v2r8(velecsum,velec);
403
404             fscal            = felec;
405
406             /* Update vectorial force */
407             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
408             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
409             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
410             
411             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
412             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
413             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
414
415             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
416
417             /* Inner loop uses 185 flops */
418         }
419
420         if(jidx<j_index_end)
421         {
422
423             jnrA             = jjnr[jidx];
424             j_coord_offsetA  = DIM*jnrA;
425
426             /* load j atom coordinates */
427             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
428                                               &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx00             = _fjsp_sub_v2r8(ix0,jx0);
432             dy00             = _fjsp_sub_v2r8(iy0,jy0);
433             dz00             = _fjsp_sub_v2r8(iz0,jz0);
434             dx10             = _fjsp_sub_v2r8(ix1,jx0);
435             dy10             = _fjsp_sub_v2r8(iy1,jy0);
436             dz10             = _fjsp_sub_v2r8(iz1,jz0);
437             dx20             = _fjsp_sub_v2r8(ix2,jx0);
438             dy20             = _fjsp_sub_v2r8(iy2,jy0);
439             dz20             = _fjsp_sub_v2r8(iz2,jz0);
440             dx30             = _fjsp_sub_v2r8(ix3,jx0);
441             dy30             = _fjsp_sub_v2r8(iy3,jy0);
442             dz30             = _fjsp_sub_v2r8(iz3,jz0);
443
444             /* Calculate squared distance and things based on it */
445             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
446             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
447             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
448             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
449
450             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
451             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
452             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
453             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
454
455             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
456             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
457             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
458             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
459
460             /* Load parameters for j particles */
461             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463
464             fjx0             = _fjsp_setzero_v2r8();
465             fjy0             = _fjsp_setzero_v2r8();
466             fjz0             = _fjsp_setzero_v2r8();
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
473
474             /* Compute parameters for interactions between i and j atoms */
475             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
476
477             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
478
479             /* Analytical LJ-PME */
480             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
481             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
482             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
483             exponent         = gmx_simd_exp_d(-ewcljrsq);
484             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
485             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
486             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
487             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
488             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
489             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
490             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
491             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
492
493             /* Update potential sum for this i atom from the interaction with this j atom. */
494             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
495             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
496
497             fscal            = fvdw;
498
499             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
500
501             /* Update vectorial force */
502             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
503             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
504             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
505             
506             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
507             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
508             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq10             = _fjsp_mul_v2r8(iq1,jq0);
518
519             /* EWALD ELECTROSTATICS */
520
521             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
522             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
523             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
524             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
525             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
526
527             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
528             ewtabD           = _fjsp_setzero_v2r8();
529             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
530             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
531             ewtabFn          = _fjsp_setzero_v2r8();
532             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
533             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
534             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
535             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
536             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
537
538             /* Update potential sum for this i atom from the interaction with this j atom. */
539             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
540             velecsum         = _fjsp_add_v2r8(velecsum,velec);
541
542             fscal            = felec;
543
544             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
545
546             /* Update vectorial force */
547             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
548             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
549             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
550             
551             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
552             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
553             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq20             = _fjsp_mul_v2r8(iq2,jq0);
563
564             /* EWALD ELECTROSTATICS */
565
566             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
567             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
568             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
569             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
570             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
571
572             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
573             ewtabD           = _fjsp_setzero_v2r8();
574             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
575             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
576             ewtabFn          = _fjsp_setzero_v2r8();
577             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
578             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
579             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
580             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
581             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
585             velecsum         = _fjsp_add_v2r8(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
590
591             /* Update vectorial force */
592             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
593             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
594             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
595             
596             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
597             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
598             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq30             = _fjsp_mul_v2r8(iq3,jq0);
608
609             /* EWALD ELECTROSTATICS */
610
611             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
612             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
613             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
614             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
615             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
616
617             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
618             ewtabD           = _fjsp_setzero_v2r8();
619             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
620             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
621             ewtabFn          = _fjsp_setzero_v2r8();
622             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
623             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
624             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
625             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
626             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
627
628             /* Update potential sum for this i atom from the interaction with this j atom. */
629             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
630             velecsum         = _fjsp_add_v2r8(velecsum,velec);
631
632             fscal            = felec;
633
634             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
635
636             /* Update vectorial force */
637             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
638             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
639             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
640             
641             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
642             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
643             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
644
645             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
646
647             /* Inner loop uses 185 flops */
648         }
649
650         /* End of innermost loop */
651
652         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
653                                               f+i_coord_offset,fshift+i_shift_offset);
654
655         ggid                        = gid[iidx];
656         /* Update potential energies */
657         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
658         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
659
660         /* Increment number of inner iterations */
661         inneriter                  += j_index_end - j_index_start;
662
663         /* Outer loop uses 26 flops */
664     }
665
666     /* Increment number of outer iterations */
667     outeriter        += nri;
668
669     /* Update outer/inner flops */
670
671     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*185);
672 }
673 /*
674  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sparc64_hpc_ace_double
675  * Electrostatics interaction: Ewald
676  * VdW interaction:            LJEwald
677  * Geometry:                   Water4-Particle
678  * Calculate force/pot:        Force
679  */
680 void
681 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sparc64_hpc_ace_double
682                     (t_nblist                    * gmx_restrict       nlist,
683                      rvec                        * gmx_restrict          xx,
684                      rvec                        * gmx_restrict          ff,
685                      t_forcerec                  * gmx_restrict          fr,
686                      t_mdatoms                   * gmx_restrict     mdatoms,
687                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
688                      t_nrnb                      * gmx_restrict        nrnb)
689 {
690     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
691      * just 0 for non-waters.
692      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
693      * jnr indices corresponding to data put in the four positions in the SIMD register.
694      */
695     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
696     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
697     int              jnrA,jnrB;
698     int              j_coord_offsetA,j_coord_offsetB;
699     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
700     real             rcutoff_scalar;
701     real             *shiftvec,*fshift,*x,*f;
702     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
703     int              vdwioffset0;
704     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
705     int              vdwioffset1;
706     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
707     int              vdwioffset2;
708     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
709     int              vdwioffset3;
710     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
711     int              vdwjidx0A,vdwjidx0B;
712     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
713     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
714     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
715     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
716     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
717     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
718     real             *charge;
719     int              nvdwtype;
720     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
721     int              *vdwtype;
722     real             *vdwparam;
723     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
724     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
725     _fjsp_v2r8           c6grid_00;
726     _fjsp_v2r8           c6grid_10;
727     _fjsp_v2r8           c6grid_20;
728     _fjsp_v2r8           c6grid_30;
729     real                 *vdwgridparam;
730     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
731     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
732     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
733     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
734     real             *ewtab;
735     _fjsp_v2r8       itab_tmp;
736     _fjsp_v2r8       dummy_mask,cutoff_mask;
737     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
738     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
739     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
740
741     x                = xx[0];
742     f                = ff[0];
743
744     nri              = nlist->nri;
745     iinr             = nlist->iinr;
746     jindex           = nlist->jindex;
747     jjnr             = nlist->jjnr;
748     shiftidx         = nlist->shift;
749     gid              = nlist->gid;
750     shiftvec         = fr->shift_vec[0];
751     fshift           = fr->fshift[0];
752     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
753     charge           = mdatoms->chargeA;
754     nvdwtype         = fr->ntype;
755     vdwparam         = fr->nbfp;
756     vdwtype          = mdatoms->typeA;
757     vdwgridparam     = fr->ljpme_c6grid;
758     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
759     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
760     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
761
762     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
763     ewtab            = fr->ic->tabq_coul_F;
764     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
765     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
766
767     /* Setup water-specific parameters */
768     inr              = nlist->iinr[0];
769     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
770     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
771     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
772     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
773
774     /* Avoid stupid compiler warnings */
775     jnrA = jnrB = 0;
776     j_coord_offsetA = 0;
777     j_coord_offsetB = 0;
778
779     outeriter        = 0;
780     inneriter        = 0;
781
782     /* Start outer loop over neighborlists */
783     for(iidx=0; iidx<nri; iidx++)
784     {
785         /* Load shift vector for this list */
786         i_shift_offset   = DIM*shiftidx[iidx];
787
788         /* Load limits for loop over neighbors */
789         j_index_start    = jindex[iidx];
790         j_index_end      = jindex[iidx+1];
791
792         /* Get outer coordinate index */
793         inr              = iinr[iidx];
794         i_coord_offset   = DIM*inr;
795
796         /* Load i particle coords and add shift vector */
797         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
798                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
799
800         fix0             = _fjsp_setzero_v2r8();
801         fiy0             = _fjsp_setzero_v2r8();
802         fiz0             = _fjsp_setzero_v2r8();
803         fix1             = _fjsp_setzero_v2r8();
804         fiy1             = _fjsp_setzero_v2r8();
805         fiz1             = _fjsp_setzero_v2r8();
806         fix2             = _fjsp_setzero_v2r8();
807         fiy2             = _fjsp_setzero_v2r8();
808         fiz2             = _fjsp_setzero_v2r8();
809         fix3             = _fjsp_setzero_v2r8();
810         fiy3             = _fjsp_setzero_v2r8();
811         fiz3             = _fjsp_setzero_v2r8();
812
813         /* Start inner kernel loop */
814         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
815         {
816
817             /* Get j neighbor index, and coordinate index */
818             jnrA             = jjnr[jidx];
819             jnrB             = jjnr[jidx+1];
820             j_coord_offsetA  = DIM*jnrA;
821             j_coord_offsetB  = DIM*jnrB;
822
823             /* load j atom coordinates */
824             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
825                                               &jx0,&jy0,&jz0);
826
827             /* Calculate displacement vector */
828             dx00             = _fjsp_sub_v2r8(ix0,jx0);
829             dy00             = _fjsp_sub_v2r8(iy0,jy0);
830             dz00             = _fjsp_sub_v2r8(iz0,jz0);
831             dx10             = _fjsp_sub_v2r8(ix1,jx0);
832             dy10             = _fjsp_sub_v2r8(iy1,jy0);
833             dz10             = _fjsp_sub_v2r8(iz1,jz0);
834             dx20             = _fjsp_sub_v2r8(ix2,jx0);
835             dy20             = _fjsp_sub_v2r8(iy2,jy0);
836             dz20             = _fjsp_sub_v2r8(iz2,jz0);
837             dx30             = _fjsp_sub_v2r8(ix3,jx0);
838             dy30             = _fjsp_sub_v2r8(iy3,jy0);
839             dz30             = _fjsp_sub_v2r8(iz3,jz0);
840
841             /* Calculate squared distance and things based on it */
842             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
843             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
844             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
845             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
846
847             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
848             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
849             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
850             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
851
852             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
853             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
854             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
855             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
856
857             /* Load parameters for j particles */
858             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
859             vdwjidx0A        = 2*vdwtype[jnrA+0];
860             vdwjidx0B        = 2*vdwtype[jnrB+0];
861
862             fjx0             = _fjsp_setzero_v2r8();
863             fjy0             = _fjsp_setzero_v2r8();
864             fjz0             = _fjsp_setzero_v2r8();
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
871
872             /* Compute parameters for interactions between i and j atoms */
873             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
874                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
875
876             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
877                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
878
879             /* Analytical LJ-PME */
880             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
881             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
882             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
883             exponent         = gmx_simd_exp_d(-ewcljrsq);
884             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
885             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
886             /* f6A = 6 * C6grid * (1 - poly) */
887             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
888             /* f6B = C6grid * exponent * beta^6 */
889             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
890             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
891             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
892
893             fscal            = fvdw;
894
895             /* Update vectorial force */
896             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
897             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
898             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
899             
900             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
901             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
902             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
909
910             /* Compute parameters for interactions between i and j atoms */
911             qq10             = _fjsp_mul_v2r8(iq1,jq0);
912
913             /* EWALD ELECTROSTATICS */
914
915             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
916             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
917             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
918             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
919             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
920
921             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
922                                          &ewtabF,&ewtabFn);
923             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
924             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
925
926             fscal            = felec;
927
928             /* Update vectorial force */
929             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
930             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
931             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
932             
933             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
934             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
935             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq20             = _fjsp_mul_v2r8(iq2,jq0);
945
946             /* EWALD ELECTROSTATICS */
947
948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
949             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
950             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
951             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
952             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
953
954             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
955                                          &ewtabF,&ewtabFn);
956             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
957             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
958
959             fscal            = felec;
960
961             /* Update vectorial force */
962             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
963             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
964             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
965             
966             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
967             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
968             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
969
970             /**************************
971              * CALCULATE INTERACTIONS *
972              **************************/
973
974             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
975
976             /* Compute parameters for interactions between i and j atoms */
977             qq30             = _fjsp_mul_v2r8(iq3,jq0);
978
979             /* EWALD ELECTROSTATICS */
980
981             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
982             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
983             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
984             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
985             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
986
987             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
988                                          &ewtabF,&ewtabFn);
989             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
990             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
991
992             fscal            = felec;
993
994             /* Update vectorial force */
995             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
996             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
997             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
998             
999             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1000             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1001             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1002
1003             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1004
1005             /* Inner loop uses 168 flops */
1006         }
1007
1008         if(jidx<j_index_end)
1009         {
1010
1011             jnrA             = jjnr[jidx];
1012             j_coord_offsetA  = DIM*jnrA;
1013
1014             /* load j atom coordinates */
1015             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1016                                               &jx0,&jy0,&jz0);
1017
1018             /* Calculate displacement vector */
1019             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1020             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1021             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1022             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1023             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1024             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1025             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1026             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1027             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1028             dx30             = _fjsp_sub_v2r8(ix3,jx0);
1029             dy30             = _fjsp_sub_v2r8(iy3,jy0);
1030             dz30             = _fjsp_sub_v2r8(iz3,jz0);
1031
1032             /* Calculate squared distance and things based on it */
1033             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1034             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1035             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1036             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
1037
1038             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1039             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1040             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1041             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
1042
1043             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1044             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1045             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1046             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
1047
1048             /* Load parameters for j particles */
1049             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1050             vdwjidx0A        = 2*vdwtype[jnrA+0];
1051
1052             fjx0             = _fjsp_setzero_v2r8();
1053             fjy0             = _fjsp_setzero_v2r8();
1054             fjz0             = _fjsp_setzero_v2r8();
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1061
1062             /* Compute parameters for interactions between i and j atoms */
1063             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1064
1065             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
1066
1067             /* Analytical LJ-PME */
1068             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1069             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
1070             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
1071             exponent         = gmx_simd_exp_d(-ewcljrsq);
1072             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1073             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
1074             /* f6A = 6 * C6grid * (1 - poly) */
1075             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
1076             /* f6B = C6grid * exponent * beta^6 */
1077             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
1078             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1079             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1080
1081             fscal            = fvdw;
1082
1083             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1084
1085             /* Update vectorial force */
1086             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1087             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1088             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1089             
1090             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1091             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1092             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1099
1100             /* Compute parameters for interactions between i and j atoms */
1101             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1102
1103             /* EWALD ELECTROSTATICS */
1104
1105             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1107             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1108             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1109             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1110
1111             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1112             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1113             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1114
1115             fscal            = felec;
1116
1117             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1118
1119             /* Update vectorial force */
1120             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1121             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1122             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1123             
1124             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1125             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1126             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1127
1128             /**************************
1129              * CALCULATE INTERACTIONS *
1130              **************************/
1131
1132             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1136
1137             /* EWALD ELECTROSTATICS */
1138
1139             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1141             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1142             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1143             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1144
1145             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1146             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1147             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1148
1149             fscal            = felec;
1150
1151             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1152
1153             /* Update vectorial force */
1154             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1155             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1156             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1157             
1158             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1159             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1160             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1161
1162             /**************************
1163              * CALCULATE INTERACTIONS *
1164              **************************/
1165
1166             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1167
1168             /* Compute parameters for interactions between i and j atoms */
1169             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1170
1171             /* EWALD ELECTROSTATICS */
1172
1173             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1174             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1175             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1176             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1177             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1178
1179             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1180             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1181             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1182
1183             fscal            = felec;
1184
1185             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1186
1187             /* Update vectorial force */
1188             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1189             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1190             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1191             
1192             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1193             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1194             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1195
1196             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1197
1198             /* Inner loop uses 168 flops */
1199         }
1200
1201         /* End of innermost loop */
1202
1203         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1204                                               f+i_coord_offset,fshift+i_shift_offset);
1205
1206         /* Increment number of inner iterations */
1207         inneriter                  += j_index_end - j_index_start;
1208
1209         /* Outer loop uses 24 flops */
1210     }
1211
1212     /* Increment number of outer iterations */
1213     outeriter        += nri;
1214
1215     /* Update outer/inner flops */
1216
1217     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*168);
1218 }