Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
100     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
101     _fjsp_v2r8           c6grid_00;
102     _fjsp_v2r8           c6grid_10;
103     _fjsp_v2r8           c6grid_20;
104     _fjsp_v2r8           c6grid_30;
105     real                 *vdwgridparam;
106     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
108     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
109     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     _fjsp_v2r8       itab_tmp;
112     _fjsp_v2r8       dummy_mask,cutoff_mask;
113     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
114     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
115     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
116
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
135     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
136     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
137
138     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
141     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
146     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
147     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176         fix0             = _fjsp_setzero_v2r8();
177         fiy0             = _fjsp_setzero_v2r8();
178         fiz0             = _fjsp_setzero_v2r8();
179         fix1             = _fjsp_setzero_v2r8();
180         fiy1             = _fjsp_setzero_v2r8();
181         fiz1             = _fjsp_setzero_v2r8();
182         fix2             = _fjsp_setzero_v2r8();
183         fiy2             = _fjsp_setzero_v2r8();
184         fiz2             = _fjsp_setzero_v2r8();
185         fix3             = _fjsp_setzero_v2r8();
186         fiy3             = _fjsp_setzero_v2r8();
187         fiz3             = _fjsp_setzero_v2r8();
188
189         /* Reset potential sums */
190         velecsum         = _fjsp_setzero_v2r8();
191         vvdwsum          = _fjsp_setzero_v2r8();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202
203             /* load j atom coordinates */
204             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _fjsp_sub_v2r8(ix0,jx0);
209             dy00             = _fjsp_sub_v2r8(iy0,jy0);
210             dz00             = _fjsp_sub_v2r8(iz0,jz0);
211             dx10             = _fjsp_sub_v2r8(ix1,jx0);
212             dy10             = _fjsp_sub_v2r8(iy1,jy0);
213             dz10             = _fjsp_sub_v2r8(iz1,jz0);
214             dx20             = _fjsp_sub_v2r8(ix2,jx0);
215             dy20             = _fjsp_sub_v2r8(iy2,jy0);
216             dz20             = _fjsp_sub_v2r8(iz2,jz0);
217             dx30             = _fjsp_sub_v2r8(ix3,jx0);
218             dy30             = _fjsp_sub_v2r8(iy3,jy0);
219             dz30             = _fjsp_sub_v2r8(iz3,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
223             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
224             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
225             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
226
227             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
228             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
229             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
230             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
231
232             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
233             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
234             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
235             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241
242             fjx0             = _fjsp_setzero_v2r8();
243             fjy0             = _fjsp_setzero_v2r8();
244             fjz0             = _fjsp_setzero_v2r8();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
254                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
255
256             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
257                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
258
259             /* Analytical LJ-PME */
260             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
261             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
262             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
263             exponent         = gmx_simd_exp_d(ewcljrsq);
264             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
265             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
266             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
267             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
268             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
269             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
270             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
271             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
275
276             fscal            = fvdw;
277
278             /* Update vectorial force */
279             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
280             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
281             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
282             
283             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
284             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
285             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
292
293             /* Compute parameters for interactions between i and j atoms */
294             qq10             = _fjsp_mul_v2r8(iq1,jq0);
295
296             /* EWALD ELECTROSTATICS */
297
298             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
299             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
300             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
301             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
302             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
303
304             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
305             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
306             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
307             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
308             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
309             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
310             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
311             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
312             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
313             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velecsum         = _fjsp_add_v2r8(velecsum,velec);
317
318             fscal            = felec;
319
320             /* Update vectorial force */
321             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
322             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
323             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
324             
325             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
326             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
327             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq20             = _fjsp_mul_v2r8(iq2,jq0);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
342             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
343             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
344             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
345
346             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
347             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
348             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
349             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
350             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
351             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
352             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
353             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
354             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
355             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velecsum         = _fjsp_add_v2r8(velecsum,velec);
359
360             fscal            = felec;
361
362             /* Update vectorial force */
363             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
364             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
365             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
366             
367             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
368             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
369             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
376
377             /* Compute parameters for interactions between i and j atoms */
378             qq30             = _fjsp_mul_v2r8(iq3,jq0);
379
380             /* EWALD ELECTROSTATICS */
381
382             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
383             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
384             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
385             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
386             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
387
388             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
389             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
390             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
391             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
392             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
393             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
394             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
395             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
396             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
397             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
398
399             /* Update potential sum for this i atom from the interaction with this j atom. */
400             velecsum         = _fjsp_add_v2r8(velecsum,velec);
401
402             fscal            = felec;
403
404             /* Update vectorial force */
405             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
406             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
407             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
408             
409             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
410             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
411             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
412
413             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
414
415             /* Inner loop uses 185 flops */
416         }
417
418         if(jidx<j_index_end)
419         {
420
421             jnrA             = jjnr[jidx];
422             j_coord_offsetA  = DIM*jnrA;
423
424             /* load j atom coordinates */
425             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
426                                               &jx0,&jy0,&jz0);
427
428             /* Calculate displacement vector */
429             dx00             = _fjsp_sub_v2r8(ix0,jx0);
430             dy00             = _fjsp_sub_v2r8(iy0,jy0);
431             dz00             = _fjsp_sub_v2r8(iz0,jz0);
432             dx10             = _fjsp_sub_v2r8(ix1,jx0);
433             dy10             = _fjsp_sub_v2r8(iy1,jy0);
434             dz10             = _fjsp_sub_v2r8(iz1,jz0);
435             dx20             = _fjsp_sub_v2r8(ix2,jx0);
436             dy20             = _fjsp_sub_v2r8(iy2,jy0);
437             dz20             = _fjsp_sub_v2r8(iz2,jz0);
438             dx30             = _fjsp_sub_v2r8(ix3,jx0);
439             dy30             = _fjsp_sub_v2r8(iy3,jy0);
440             dz30             = _fjsp_sub_v2r8(iz3,jz0);
441
442             /* Calculate squared distance and things based on it */
443             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
444             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
445             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
446             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
447
448             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
449             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
450             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
451             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
452
453             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
454             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
455             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
456             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
457
458             /* Load parameters for j particles */
459             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
460             vdwjidx0A        = 2*vdwtype[jnrA+0];
461
462             fjx0             = _fjsp_setzero_v2r8();
463             fjy0             = _fjsp_setzero_v2r8();
464             fjz0             = _fjsp_setzero_v2r8();
465
466             /**************************
467              * CALCULATE INTERACTIONS *
468              **************************/
469
470             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
471
472             /* Compute parameters for interactions between i and j atoms */
473             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
474                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
475
476             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
477                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
478
479             /* Analytical LJ-PME */
480             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
481             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
482             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
483             exponent         = gmx_simd_exp_d(ewcljrsq);
484             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
485             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
486             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
487             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
488             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
489             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
490             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
491             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
492
493             /* Update potential sum for this i atom from the interaction with this j atom. */
494             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
495             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
496
497             fscal            = fvdw;
498
499             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
500
501             /* Update vectorial force */
502             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
503             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
504             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
505             
506             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
507             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
508             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq10             = _fjsp_mul_v2r8(iq1,jq0);
518
519             /* EWALD ELECTROSTATICS */
520
521             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
522             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
523             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
524             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
525             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
526
527             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
528             ewtabD           = _fjsp_setzero_v2r8();
529             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
530             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
531             ewtabFn          = _fjsp_setzero_v2r8();
532             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
533             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
534             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
535             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
536             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
537
538             /* Update potential sum for this i atom from the interaction with this j atom. */
539             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
540             velecsum         = _fjsp_add_v2r8(velecsum,velec);
541
542             fscal            = felec;
543
544             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
545
546             /* Update vectorial force */
547             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
548             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
549             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
550             
551             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
552             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
553             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq20             = _fjsp_mul_v2r8(iq2,jq0);
563
564             /* EWALD ELECTROSTATICS */
565
566             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
567             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
568             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
569             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
570             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
571
572             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
573             ewtabD           = _fjsp_setzero_v2r8();
574             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
575             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
576             ewtabFn          = _fjsp_setzero_v2r8();
577             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
578             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
579             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
580             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
581             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
585             velecsum         = _fjsp_add_v2r8(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
590
591             /* Update vectorial force */
592             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
593             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
594             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
595             
596             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
597             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
598             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq30             = _fjsp_mul_v2r8(iq3,jq0);
608
609             /* EWALD ELECTROSTATICS */
610
611             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
612             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
613             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
614             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
615             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
616
617             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
618             ewtabD           = _fjsp_setzero_v2r8();
619             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
620             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
621             ewtabFn          = _fjsp_setzero_v2r8();
622             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
623             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
624             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
625             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
626             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
627
628             /* Update potential sum for this i atom from the interaction with this j atom. */
629             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
630             velecsum         = _fjsp_add_v2r8(velecsum,velec);
631
632             fscal            = felec;
633
634             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
635
636             /* Update vectorial force */
637             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
638             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
639             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
640             
641             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
642             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
643             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
644
645             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
646
647             /* Inner loop uses 185 flops */
648         }
649
650         /* End of innermost loop */
651
652         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
653                                               f+i_coord_offset,fshift+i_shift_offset);
654
655         ggid                        = gid[iidx];
656         /* Update potential energies */
657         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
658         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
659
660         /* Increment number of inner iterations */
661         inneriter                  += j_index_end - j_index_start;
662
663         /* Outer loop uses 26 flops */
664     }
665
666     /* Increment number of outer iterations */
667     outeriter        += nri;
668
669     /* Update outer/inner flops */
670
671     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*185);
672 }
673 /*
674  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sparc64_hpc_ace_double
675  * Electrostatics interaction: Ewald
676  * VdW interaction:            LJEwald
677  * Geometry:                   Water4-Particle
678  * Calculate force/pot:        Force
679  */
680 void
681 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sparc64_hpc_ace_double
682                     (t_nblist                    * gmx_restrict       nlist,
683                      rvec                        * gmx_restrict          xx,
684                      rvec                        * gmx_restrict          ff,
685                      struct t_forcerec           * gmx_restrict          fr,
686                      t_mdatoms                   * gmx_restrict     mdatoms,
687                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
688                      t_nrnb                      * gmx_restrict        nrnb)
689 {
690     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
691      * just 0 for non-waters.
692      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
693      * jnr indices corresponding to data put in the four positions in the SIMD register.
694      */
695     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
696     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
697     int              jnrA,jnrB;
698     int              j_coord_offsetA,j_coord_offsetB;
699     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
700     real             rcutoff_scalar;
701     real             *shiftvec,*fshift,*x,*f;
702     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
703     int              vdwioffset0;
704     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
705     int              vdwioffset1;
706     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
707     int              vdwioffset2;
708     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
709     int              vdwioffset3;
710     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
711     int              vdwjidx0A,vdwjidx0B;
712     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
713     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
714     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
715     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
716     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
717     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
718     real             *charge;
719     int              nvdwtype;
720     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
721     int              *vdwtype;
722     real             *vdwparam;
723     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
724     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
725     _fjsp_v2r8           c6grid_00;
726     _fjsp_v2r8           c6grid_10;
727     _fjsp_v2r8           c6grid_20;
728     _fjsp_v2r8           c6grid_30;
729     real                 *vdwgridparam;
730     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
731     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
732     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
733     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
734     real             *ewtab;
735     _fjsp_v2r8       itab_tmp;
736     _fjsp_v2r8       dummy_mask,cutoff_mask;
737     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
738     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
739     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
740
741     x                = xx[0];
742     f                = ff[0];
743
744     nri              = nlist->nri;
745     iinr             = nlist->iinr;
746     jindex           = nlist->jindex;
747     jjnr             = nlist->jjnr;
748     shiftidx         = nlist->shift;
749     gid              = nlist->gid;
750     shiftvec         = fr->shift_vec[0];
751     fshift           = fr->fshift[0];
752     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
753     charge           = mdatoms->chargeA;
754     nvdwtype         = fr->ntype;
755     vdwparam         = fr->nbfp;
756     vdwtype          = mdatoms->typeA;
757     vdwgridparam     = fr->ljpme_c6grid;
758     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
759     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
760     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
761
762     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
763     ewtab            = fr->ic->tabq_coul_F;
764     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
765     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
766
767     /* Setup water-specific parameters */
768     inr              = nlist->iinr[0];
769     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
770     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
771     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
772     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
773
774     /* Avoid stupid compiler warnings */
775     jnrA = jnrB = 0;
776     j_coord_offsetA = 0;
777     j_coord_offsetB = 0;
778
779     outeriter        = 0;
780     inneriter        = 0;
781
782     /* Start outer loop over neighborlists */
783     for(iidx=0; iidx<nri; iidx++)
784     {
785         /* Load shift vector for this list */
786         i_shift_offset   = DIM*shiftidx[iidx];
787
788         /* Load limits for loop over neighbors */
789         j_index_start    = jindex[iidx];
790         j_index_end      = jindex[iidx+1];
791
792         /* Get outer coordinate index */
793         inr              = iinr[iidx];
794         i_coord_offset   = DIM*inr;
795
796         /* Load i particle coords and add shift vector */
797         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
798                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
799
800         fix0             = _fjsp_setzero_v2r8();
801         fiy0             = _fjsp_setzero_v2r8();
802         fiz0             = _fjsp_setzero_v2r8();
803         fix1             = _fjsp_setzero_v2r8();
804         fiy1             = _fjsp_setzero_v2r8();
805         fiz1             = _fjsp_setzero_v2r8();
806         fix2             = _fjsp_setzero_v2r8();
807         fiy2             = _fjsp_setzero_v2r8();
808         fiz2             = _fjsp_setzero_v2r8();
809         fix3             = _fjsp_setzero_v2r8();
810         fiy3             = _fjsp_setzero_v2r8();
811         fiz3             = _fjsp_setzero_v2r8();
812
813         /* Start inner kernel loop */
814         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
815         {
816
817             /* Get j neighbor index, and coordinate index */
818             jnrA             = jjnr[jidx];
819             jnrB             = jjnr[jidx+1];
820             j_coord_offsetA  = DIM*jnrA;
821             j_coord_offsetB  = DIM*jnrB;
822
823             /* load j atom coordinates */
824             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
825                                               &jx0,&jy0,&jz0);
826
827             /* Calculate displacement vector */
828             dx00             = _fjsp_sub_v2r8(ix0,jx0);
829             dy00             = _fjsp_sub_v2r8(iy0,jy0);
830             dz00             = _fjsp_sub_v2r8(iz0,jz0);
831             dx10             = _fjsp_sub_v2r8(ix1,jx0);
832             dy10             = _fjsp_sub_v2r8(iy1,jy0);
833             dz10             = _fjsp_sub_v2r8(iz1,jz0);
834             dx20             = _fjsp_sub_v2r8(ix2,jx0);
835             dy20             = _fjsp_sub_v2r8(iy2,jy0);
836             dz20             = _fjsp_sub_v2r8(iz2,jz0);
837             dx30             = _fjsp_sub_v2r8(ix3,jx0);
838             dy30             = _fjsp_sub_v2r8(iy3,jy0);
839             dz30             = _fjsp_sub_v2r8(iz3,jz0);
840
841             /* Calculate squared distance and things based on it */
842             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
843             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
844             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
845             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
846
847             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
848             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
849             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
850             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
851
852             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
853             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
854             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
855             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
856
857             /* Load parameters for j particles */
858             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
859             vdwjidx0A        = 2*vdwtype[jnrA+0];
860             vdwjidx0B        = 2*vdwtype[jnrB+0];
861
862             fjx0             = _fjsp_setzero_v2r8();
863             fjy0             = _fjsp_setzero_v2r8();
864             fjz0             = _fjsp_setzero_v2r8();
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
871
872             /* Compute parameters for interactions between i and j atoms */
873             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
874                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
875
876             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
877                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
878
879             /* Analytical LJ-PME */
880             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
881             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
882             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
883             exponent         = gmx_simd_exp_d(ewcljrsq);
884             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
885             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
886             /* f6A = 6 * C6grid * (1 - poly) */
887             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
888             /* f6B = C6grid * exponent * beta^6 */
889             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
890             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
891             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
892
893             fscal            = fvdw;
894
895             /* Update vectorial force */
896             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
897             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
898             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
899             
900             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
901             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
902             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
909
910             /* Compute parameters for interactions between i and j atoms */
911             qq10             = _fjsp_mul_v2r8(iq1,jq0);
912
913             /* EWALD ELECTROSTATICS */
914
915             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
916             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
917             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
918             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
919             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
920
921             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
922                                          &ewtabF,&ewtabFn);
923             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
924             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
925
926             fscal            = felec;
927
928             /* Update vectorial force */
929             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
930             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
931             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
932             
933             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
934             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
935             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq20             = _fjsp_mul_v2r8(iq2,jq0);
945
946             /* EWALD ELECTROSTATICS */
947
948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
949             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
950             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
951             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
952             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
953
954             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
955                                          &ewtabF,&ewtabFn);
956             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
957             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
958
959             fscal            = felec;
960
961             /* Update vectorial force */
962             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
963             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
964             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
965             
966             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
967             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
968             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
969
970             /**************************
971              * CALCULATE INTERACTIONS *
972              **************************/
973
974             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
975
976             /* Compute parameters for interactions between i and j atoms */
977             qq30             = _fjsp_mul_v2r8(iq3,jq0);
978
979             /* EWALD ELECTROSTATICS */
980
981             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
982             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
983             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
984             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
985             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
986
987             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
988                                          &ewtabF,&ewtabFn);
989             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
990             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
991
992             fscal            = felec;
993
994             /* Update vectorial force */
995             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
996             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
997             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
998             
999             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1000             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1001             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1002
1003             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1004
1005             /* Inner loop uses 168 flops */
1006         }
1007
1008         if(jidx<j_index_end)
1009         {
1010
1011             jnrA             = jjnr[jidx];
1012             j_coord_offsetA  = DIM*jnrA;
1013
1014             /* load j atom coordinates */
1015             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1016                                               &jx0,&jy0,&jz0);
1017
1018             /* Calculate displacement vector */
1019             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1020             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1021             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1022             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1023             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1024             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1025             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1026             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1027             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1028             dx30             = _fjsp_sub_v2r8(ix3,jx0);
1029             dy30             = _fjsp_sub_v2r8(iy3,jy0);
1030             dz30             = _fjsp_sub_v2r8(iz3,jz0);
1031
1032             /* Calculate squared distance and things based on it */
1033             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1034             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1035             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1036             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
1037
1038             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1039             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1040             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1041             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
1042
1043             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1044             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1045             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1046             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
1047
1048             /* Load parameters for j particles */
1049             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1050             vdwjidx0A        = 2*vdwtype[jnrA+0];
1051
1052             fjx0             = _fjsp_setzero_v2r8();
1053             fjy0             = _fjsp_setzero_v2r8();
1054             fjz0             = _fjsp_setzero_v2r8();
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1061
1062             /* Compute parameters for interactions between i and j atoms */
1063             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1064                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1065
1066             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
1067                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
1068
1069             /* Analytical LJ-PME */
1070             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1071             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
1072             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
1073             exponent         = gmx_simd_exp_d(ewcljrsq);
1074             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1075             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
1076             /* f6A = 6 * C6grid * (1 - poly) */
1077             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
1078             /* f6B = C6grid * exponent * beta^6 */
1079             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
1080             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1081             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1082
1083             fscal            = fvdw;
1084
1085             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1086
1087             /* Update vectorial force */
1088             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1089             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1090             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1091             
1092             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1093             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1094             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1095
1096             /**************************
1097              * CALCULATE INTERACTIONS *
1098              **************************/
1099
1100             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1104
1105             /* EWALD ELECTROSTATICS */
1106
1107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1109             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1110             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1111             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1112
1113             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1114             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1115             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1116
1117             fscal            = felec;
1118
1119             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1120
1121             /* Update vectorial force */
1122             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1123             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1124             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1125             
1126             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1127             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1128             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1129
1130             /**************************
1131              * CALCULATE INTERACTIONS *
1132              **************************/
1133
1134             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1138
1139             /* EWALD ELECTROSTATICS */
1140
1141             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1142             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1143             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1144             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1145             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1146
1147             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1148             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1149             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1150
1151             fscal            = felec;
1152
1153             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1154
1155             /* Update vectorial force */
1156             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1157             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1158             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1159             
1160             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1161             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1162             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1163
1164             /**************************
1165              * CALCULATE INTERACTIONS *
1166              **************************/
1167
1168             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1169
1170             /* Compute parameters for interactions between i and j atoms */
1171             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1172
1173             /* EWALD ELECTROSTATICS */
1174
1175             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1176             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1177             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1178             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1179             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1180
1181             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1182             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1183             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1184
1185             fscal            = felec;
1186
1187             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1188
1189             /* Update vectorial force */
1190             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1191             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1192             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1193             
1194             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1195             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1196             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1197
1198             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1199
1200             /* Inner loop uses 168 flops */
1201         }
1202
1203         /* End of innermost loop */
1204
1205         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1206                                               f+i_coord_offset,fshift+i_shift_offset);
1207
1208         /* Increment number of inner iterations */
1209         inneriter                  += j_index_end - j_index_start;
1210
1211         /* Outer loop uses 24 flops */
1212     }
1213
1214     /* Increment number of outer iterations */
1215     outeriter        += nri;
1216
1217     /* Update outer/inner flops */
1218
1219     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*168);
1220 }