Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8           c6grid_00;
99     _fjsp_v2r8           c6grid_10;
100     _fjsp_v2r8           c6grid_20;
101     real                 *vdwgridparam;
102     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
104     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
105     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     _fjsp_v2r8       itab_tmp;
108     _fjsp_v2r8       dummy_mask,cutoff_mask;
109     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
110     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
111     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
112
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
131     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
132     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
133
134     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
137     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
142     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
143     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _fjsp_setzero_v2r8();
173         fiy0             = _fjsp_setzero_v2r8();
174         fiz0             = _fjsp_setzero_v2r8();
175         fix1             = _fjsp_setzero_v2r8();
176         fiy1             = _fjsp_setzero_v2r8();
177         fiz1             = _fjsp_setzero_v2r8();
178         fix2             = _fjsp_setzero_v2r8();
179         fiy2             = _fjsp_setzero_v2r8();
180         fiz2             = _fjsp_setzero_v2r8();
181
182         /* Reset potential sums */
183         velecsum         = _fjsp_setzero_v2r8();
184         vvdwsum          = _fjsp_setzero_v2r8();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195
196             /* load j atom coordinates */
197             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _fjsp_sub_v2r8(ix0,jx0);
202             dy00             = _fjsp_sub_v2r8(iy0,jy0);
203             dz00             = _fjsp_sub_v2r8(iz0,jz0);
204             dx10             = _fjsp_sub_v2r8(ix1,jx0);
205             dy10             = _fjsp_sub_v2r8(iy1,jy0);
206             dz10             = _fjsp_sub_v2r8(iz1,jz0);
207             dx20             = _fjsp_sub_v2r8(ix2,jx0);
208             dy20             = _fjsp_sub_v2r8(iy2,jy0);
209             dz20             = _fjsp_sub_v2r8(iz2,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
213             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
214             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
215
216             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
217             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
218             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
219
220             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
221             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
222             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228
229             fjx0             = _fjsp_setzero_v2r8();
230             fjy0             = _fjsp_setzero_v2r8();
231             fjz0             = _fjsp_setzero_v2r8();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _fjsp_mul_v2r8(iq0,jq0);
241             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
243
244             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
245                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
246
247             /* EWALD ELECTROSTATICS */
248
249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
250             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
251             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
252             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
253             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
254
255             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
256             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
257             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
258             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
259             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
260             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
261             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
262             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
263             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
264             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
265
266             /* Analytical LJ-PME */
267             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
268             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
269             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
270             exponent         = gmx_simd_exp_d(ewcljrsq);
271             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
272             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
273             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
274             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
275             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
276             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
277             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
278             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _fjsp_add_v2r8(velecsum,velec);
282             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
283
284             fscal            = _fjsp_add_v2r8(felec,fvdw);
285
286             /* Update vectorial force */
287             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
288             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
289             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
290             
291             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
292             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
293             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _fjsp_mul_v2r8(iq1,jq0);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
308             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
309             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
310             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
311
312             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
313             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
314             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
315             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
316             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
317             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
318             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
319             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
320             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
321             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velecsum         = _fjsp_add_v2r8(velecsum,velec);
325
326             fscal            = felec;
327
328             /* Update vectorial force */
329             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
330             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
331             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
332             
333             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
334             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
335             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq20             = _fjsp_mul_v2r8(iq2,jq0);
345
346             /* EWALD ELECTROSTATICS */
347
348             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
349             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
350             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
351             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
352             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
353
354             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
355             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
356             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
357             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
358             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
359             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
360             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
361             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
362             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
363             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velecsum         = _fjsp_add_v2r8(velecsum,velec);
367
368             fscal            = felec;
369
370             /* Update vectorial force */
371             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
372             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
373             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
374             
375             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
376             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
377             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
378
379             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
380
381             /* Inner loop uses 159 flops */
382         }
383
384         if(jidx<j_index_end)
385         {
386
387             jnrA             = jjnr[jidx];
388             j_coord_offsetA  = DIM*jnrA;
389
390             /* load j atom coordinates */
391             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
392                                               &jx0,&jy0,&jz0);
393
394             /* Calculate displacement vector */
395             dx00             = _fjsp_sub_v2r8(ix0,jx0);
396             dy00             = _fjsp_sub_v2r8(iy0,jy0);
397             dz00             = _fjsp_sub_v2r8(iz0,jz0);
398             dx10             = _fjsp_sub_v2r8(ix1,jx0);
399             dy10             = _fjsp_sub_v2r8(iy1,jy0);
400             dz10             = _fjsp_sub_v2r8(iz1,jz0);
401             dx20             = _fjsp_sub_v2r8(ix2,jx0);
402             dy20             = _fjsp_sub_v2r8(iy2,jy0);
403             dz20             = _fjsp_sub_v2r8(iz2,jz0);
404
405             /* Calculate squared distance and things based on it */
406             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
407             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
408             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
409
410             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
411             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
412             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
413
414             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
415             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
416             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
417
418             /* Load parameters for j particles */
419             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
420             vdwjidx0A        = 2*vdwtype[jnrA+0];
421
422             fjx0             = _fjsp_setzero_v2r8();
423             fjy0             = _fjsp_setzero_v2r8();
424             fjz0             = _fjsp_setzero_v2r8();
425
426             /**************************
427              * CALCULATE INTERACTIONS *
428              **************************/
429
430             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
431
432             /* Compute parameters for interactions between i and j atoms */
433             qq00             = _fjsp_mul_v2r8(iq0,jq0);
434             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
435                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
436
437             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
438                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
439
440             /* EWALD ELECTROSTATICS */
441
442             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
443             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
444             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
445             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
446             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
447
448             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
449             ewtabD           = _fjsp_setzero_v2r8();
450             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
451             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
452             ewtabFn          = _fjsp_setzero_v2r8();
453             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
454             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
455             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
456             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
457             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
458
459             /* Analytical LJ-PME */
460             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
461             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
462             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
463             exponent         = gmx_simd_exp_d(ewcljrsq);
464             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
465             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
466             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
467             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
468             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
469             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
470             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
471             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
475             velecsum         = _fjsp_add_v2r8(velecsum,velec);
476             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
477             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
478
479             fscal            = _fjsp_add_v2r8(felec,fvdw);
480
481             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
482
483             /* Update vectorial force */
484             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
485             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
486             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
487             
488             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
489             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
490             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq10             = _fjsp_mul_v2r8(iq1,jq0);
500
501             /* EWALD ELECTROSTATICS */
502
503             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
504             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
505             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
506             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
507             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
508
509             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
510             ewtabD           = _fjsp_setzero_v2r8();
511             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
512             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
513             ewtabFn          = _fjsp_setzero_v2r8();
514             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
515             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
516             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
517             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
518             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
522             velecsum         = _fjsp_add_v2r8(velecsum,velec);
523
524             fscal            = felec;
525
526             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
527
528             /* Update vectorial force */
529             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
530             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
531             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
532             
533             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
534             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
535             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
542
543             /* Compute parameters for interactions between i and j atoms */
544             qq20             = _fjsp_mul_v2r8(iq2,jq0);
545
546             /* EWALD ELECTROSTATICS */
547
548             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
549             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
550             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
551             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
552             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
553
554             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
555             ewtabD           = _fjsp_setzero_v2r8();
556             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
557             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
558             ewtabFn          = _fjsp_setzero_v2r8();
559             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
560             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
561             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
562             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
563             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
567             velecsum         = _fjsp_add_v2r8(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
572
573             /* Update vectorial force */
574             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
575             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
576             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
577             
578             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
579             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
580             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
581
582             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
583
584             /* Inner loop uses 159 flops */
585         }
586
587         /* End of innermost loop */
588
589         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
590                                               f+i_coord_offset,fshift+i_shift_offset);
591
592         ggid                        = gid[iidx];
593         /* Update potential energies */
594         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
595         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
596
597         /* Increment number of inner iterations */
598         inneriter                  += j_index_end - j_index_start;
599
600         /* Outer loop uses 20 flops */
601     }
602
603     /* Increment number of outer iterations */
604     outeriter        += nri;
605
606     /* Update outer/inner flops */
607
608     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
609 }
610 /*
611  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sparc64_hpc_ace_double
612  * Electrostatics interaction: Ewald
613  * VdW interaction:            LJEwald
614  * Geometry:                   Water3-Particle
615  * Calculate force/pot:        Force
616  */
617 void
618 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sparc64_hpc_ace_double
619                     (t_nblist                    * gmx_restrict       nlist,
620                      rvec                        * gmx_restrict          xx,
621                      rvec                        * gmx_restrict          ff,
622                      struct t_forcerec           * gmx_restrict          fr,
623                      t_mdatoms                   * gmx_restrict     mdatoms,
624                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
625                      t_nrnb                      * gmx_restrict        nrnb)
626 {
627     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
628      * just 0 for non-waters.
629      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
630      * jnr indices corresponding to data put in the four positions in the SIMD register.
631      */
632     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
633     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
634     int              jnrA,jnrB;
635     int              j_coord_offsetA,j_coord_offsetB;
636     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
637     real             rcutoff_scalar;
638     real             *shiftvec,*fshift,*x,*f;
639     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
640     int              vdwioffset0;
641     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
642     int              vdwioffset1;
643     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
644     int              vdwioffset2;
645     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
646     int              vdwjidx0A,vdwjidx0B;
647     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
648     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
649     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
650     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
651     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
652     real             *charge;
653     int              nvdwtype;
654     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
655     int              *vdwtype;
656     real             *vdwparam;
657     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
658     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
659     _fjsp_v2r8           c6grid_00;
660     _fjsp_v2r8           c6grid_10;
661     _fjsp_v2r8           c6grid_20;
662     real                 *vdwgridparam;
663     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
664     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
665     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
666     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
667     real             *ewtab;
668     _fjsp_v2r8       itab_tmp;
669     _fjsp_v2r8       dummy_mask,cutoff_mask;
670     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
671     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
672     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
673
674     x                = xx[0];
675     f                = ff[0];
676
677     nri              = nlist->nri;
678     iinr             = nlist->iinr;
679     jindex           = nlist->jindex;
680     jjnr             = nlist->jjnr;
681     shiftidx         = nlist->shift;
682     gid              = nlist->gid;
683     shiftvec         = fr->shift_vec[0];
684     fshift           = fr->fshift[0];
685     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
686     charge           = mdatoms->chargeA;
687     nvdwtype         = fr->ntype;
688     vdwparam         = fr->nbfp;
689     vdwtype          = mdatoms->typeA;
690     vdwgridparam     = fr->ljpme_c6grid;
691     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
692     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
693     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
694
695     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
696     ewtab            = fr->ic->tabq_coul_F;
697     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
698     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
699
700     /* Setup water-specific parameters */
701     inr              = nlist->iinr[0];
702     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
703     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
704     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
705     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
706
707     /* Avoid stupid compiler warnings */
708     jnrA = jnrB = 0;
709     j_coord_offsetA = 0;
710     j_coord_offsetB = 0;
711
712     outeriter        = 0;
713     inneriter        = 0;
714
715     /* Start outer loop over neighborlists */
716     for(iidx=0; iidx<nri; iidx++)
717     {
718         /* Load shift vector for this list */
719         i_shift_offset   = DIM*shiftidx[iidx];
720
721         /* Load limits for loop over neighbors */
722         j_index_start    = jindex[iidx];
723         j_index_end      = jindex[iidx+1];
724
725         /* Get outer coordinate index */
726         inr              = iinr[iidx];
727         i_coord_offset   = DIM*inr;
728
729         /* Load i particle coords and add shift vector */
730         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
731                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
732
733         fix0             = _fjsp_setzero_v2r8();
734         fiy0             = _fjsp_setzero_v2r8();
735         fiz0             = _fjsp_setzero_v2r8();
736         fix1             = _fjsp_setzero_v2r8();
737         fiy1             = _fjsp_setzero_v2r8();
738         fiz1             = _fjsp_setzero_v2r8();
739         fix2             = _fjsp_setzero_v2r8();
740         fiy2             = _fjsp_setzero_v2r8();
741         fiz2             = _fjsp_setzero_v2r8();
742
743         /* Start inner kernel loop */
744         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
745         {
746
747             /* Get j neighbor index, and coordinate index */
748             jnrA             = jjnr[jidx];
749             jnrB             = jjnr[jidx+1];
750             j_coord_offsetA  = DIM*jnrA;
751             j_coord_offsetB  = DIM*jnrB;
752
753             /* load j atom coordinates */
754             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
755                                               &jx0,&jy0,&jz0);
756
757             /* Calculate displacement vector */
758             dx00             = _fjsp_sub_v2r8(ix0,jx0);
759             dy00             = _fjsp_sub_v2r8(iy0,jy0);
760             dz00             = _fjsp_sub_v2r8(iz0,jz0);
761             dx10             = _fjsp_sub_v2r8(ix1,jx0);
762             dy10             = _fjsp_sub_v2r8(iy1,jy0);
763             dz10             = _fjsp_sub_v2r8(iz1,jz0);
764             dx20             = _fjsp_sub_v2r8(ix2,jx0);
765             dy20             = _fjsp_sub_v2r8(iy2,jy0);
766             dz20             = _fjsp_sub_v2r8(iz2,jz0);
767
768             /* Calculate squared distance and things based on it */
769             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
770             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
771             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
772
773             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
774             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
775             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
776
777             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
778             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
779             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
780
781             /* Load parameters for j particles */
782             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
783             vdwjidx0A        = 2*vdwtype[jnrA+0];
784             vdwjidx0B        = 2*vdwtype[jnrB+0];
785
786             fjx0             = _fjsp_setzero_v2r8();
787             fjy0             = _fjsp_setzero_v2r8();
788             fjz0             = _fjsp_setzero_v2r8();
789
790             /**************************
791              * CALCULATE INTERACTIONS *
792              **************************/
793
794             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
795
796             /* Compute parameters for interactions between i and j atoms */
797             qq00             = _fjsp_mul_v2r8(iq0,jq0);
798             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
799                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
800
801             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
802                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
803
804             /* EWALD ELECTROSTATICS */
805
806             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
807             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
808             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
809             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
810             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
811
812             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
813                                          &ewtabF,&ewtabFn);
814             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
815             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
816
817             /* Analytical LJ-PME */
818             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
819             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
820             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
821             exponent         = gmx_simd_exp_d(ewcljrsq);
822             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
823             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
824             /* f6A = 6 * C6grid * (1 - poly) */
825             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
826             /* f6B = C6grid * exponent * beta^6 */
827             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
828             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
829             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
830
831             fscal            = _fjsp_add_v2r8(felec,fvdw);
832
833             /* Update vectorial force */
834             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
835             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
836             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
837             
838             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
839             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
840             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
841
842             /**************************
843              * CALCULATE INTERACTIONS *
844              **************************/
845
846             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
847
848             /* Compute parameters for interactions between i and j atoms */
849             qq10             = _fjsp_mul_v2r8(iq1,jq0);
850
851             /* EWALD ELECTROSTATICS */
852
853             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
854             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
855             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
856             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
857             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
858
859             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
860                                          &ewtabF,&ewtabFn);
861             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
862             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
863
864             fscal            = felec;
865
866             /* Update vectorial force */
867             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
868             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
869             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
870             
871             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
872             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
873             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
874
875             /**************************
876              * CALCULATE INTERACTIONS *
877              **************************/
878
879             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
880
881             /* Compute parameters for interactions between i and j atoms */
882             qq20             = _fjsp_mul_v2r8(iq2,jq0);
883
884             /* EWALD ELECTROSTATICS */
885
886             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
887             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
888             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
889             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
890             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
891
892             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
893                                          &ewtabF,&ewtabFn);
894             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
895             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
896
897             fscal            = felec;
898
899             /* Update vectorial force */
900             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
901             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
902             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
903             
904             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
905             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
906             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
907
908             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
909
910             /* Inner loop uses 142 flops */
911         }
912
913         if(jidx<j_index_end)
914         {
915
916             jnrA             = jjnr[jidx];
917             j_coord_offsetA  = DIM*jnrA;
918
919             /* load j atom coordinates */
920             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
921                                               &jx0,&jy0,&jz0);
922
923             /* Calculate displacement vector */
924             dx00             = _fjsp_sub_v2r8(ix0,jx0);
925             dy00             = _fjsp_sub_v2r8(iy0,jy0);
926             dz00             = _fjsp_sub_v2r8(iz0,jz0);
927             dx10             = _fjsp_sub_v2r8(ix1,jx0);
928             dy10             = _fjsp_sub_v2r8(iy1,jy0);
929             dz10             = _fjsp_sub_v2r8(iz1,jz0);
930             dx20             = _fjsp_sub_v2r8(ix2,jx0);
931             dy20             = _fjsp_sub_v2r8(iy2,jy0);
932             dz20             = _fjsp_sub_v2r8(iz2,jz0);
933
934             /* Calculate squared distance and things based on it */
935             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
936             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
937             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
938
939             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
940             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
941             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
942
943             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
944             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
945             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
946
947             /* Load parameters for j particles */
948             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
949             vdwjidx0A        = 2*vdwtype[jnrA+0];
950
951             fjx0             = _fjsp_setzero_v2r8();
952             fjy0             = _fjsp_setzero_v2r8();
953             fjz0             = _fjsp_setzero_v2r8();
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
960
961             /* Compute parameters for interactions between i and j atoms */
962             qq00             = _fjsp_mul_v2r8(iq0,jq0);
963             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
964                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
965
966             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
967                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
968
969             /* EWALD ELECTROSTATICS */
970
971             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
972             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
973             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
974             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
975             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
976
977             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
978             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
979             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
980
981             /* Analytical LJ-PME */
982             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
983             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
984             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
985             exponent         = gmx_simd_exp_d(ewcljrsq);
986             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
987             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
988             /* f6A = 6 * C6grid * (1 - poly) */
989             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
990             /* f6B = C6grid * exponent * beta^6 */
991             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
992             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
993             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
994
995             fscal            = _fjsp_add_v2r8(felec,fvdw);
996
997             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
998
999             /* Update vectorial force */
1000             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1001             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1002             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1003             
1004             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1005             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1006             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1016
1017             /* EWALD ELECTROSTATICS */
1018
1019             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1020             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1021             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1022             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1023             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1024
1025             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1026             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1027             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1028
1029             fscal            = felec;
1030
1031             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1032
1033             /* Update vectorial force */
1034             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1035             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1036             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1037             
1038             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1039             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1040             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1041
1042             /**************************
1043              * CALCULATE INTERACTIONS *
1044              **************************/
1045
1046             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1047
1048             /* Compute parameters for interactions between i and j atoms */
1049             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1050
1051             /* EWALD ELECTROSTATICS */
1052
1053             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1054             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1055             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1056             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1057             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1058
1059             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1060             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1061             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1062
1063             fscal            = felec;
1064
1065             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1066
1067             /* Update vectorial force */
1068             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1069             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1070             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1071             
1072             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1073             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1074             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1075
1076             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1077
1078             /* Inner loop uses 142 flops */
1079         }
1080
1081         /* End of innermost loop */
1082
1083         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1084                                               f+i_coord_offset,fshift+i_shift_offset);
1085
1086         /* Increment number of inner iterations */
1087         inneriter                  += j_index_end - j_index_start;
1088
1089         /* Outer loop uses 18 flops */
1090     }
1091
1092     /* Increment number of outer iterations */
1093     outeriter        += nri;
1094
1095     /* Update outer/inner flops */
1096
1097     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*142);
1098 }