106d570f4ccb32248cf55a7b9e8e3112eeab8056
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8           c6grid_00;
99     _fjsp_v2r8           c6grid_10;
100     _fjsp_v2r8           c6grid_20;
101     real                 *vdwgridparam;
102     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
104     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
105     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     _fjsp_v2r8       itab_tmp;
108     _fjsp_v2r8       dummy_mask,cutoff_mask;
109     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
110     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
111     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
112
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
131     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
132     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
133
134     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
137     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
142     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
143     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _fjsp_setzero_v2r8();
173         fiy0             = _fjsp_setzero_v2r8();
174         fiz0             = _fjsp_setzero_v2r8();
175         fix1             = _fjsp_setzero_v2r8();
176         fiy1             = _fjsp_setzero_v2r8();
177         fiz1             = _fjsp_setzero_v2r8();
178         fix2             = _fjsp_setzero_v2r8();
179         fiy2             = _fjsp_setzero_v2r8();
180         fiz2             = _fjsp_setzero_v2r8();
181
182         /* Reset potential sums */
183         velecsum         = _fjsp_setzero_v2r8();
184         vvdwsum          = _fjsp_setzero_v2r8();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195
196             /* load j atom coordinates */
197             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _fjsp_sub_v2r8(ix0,jx0);
202             dy00             = _fjsp_sub_v2r8(iy0,jy0);
203             dz00             = _fjsp_sub_v2r8(iz0,jz0);
204             dx10             = _fjsp_sub_v2r8(ix1,jx0);
205             dy10             = _fjsp_sub_v2r8(iy1,jy0);
206             dz10             = _fjsp_sub_v2r8(iz1,jz0);
207             dx20             = _fjsp_sub_v2r8(ix2,jx0);
208             dy20             = _fjsp_sub_v2r8(iy2,jy0);
209             dz20             = _fjsp_sub_v2r8(iz2,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
213             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
214             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
215
216             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
217             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
218             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
219
220             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
221             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
222             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228
229             fjx0             = _fjsp_setzero_v2r8();
230             fjy0             = _fjsp_setzero_v2r8();
231             fjz0             = _fjsp_setzero_v2r8();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _fjsp_mul_v2r8(iq0,jq0);
241             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
243
244             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
245                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
246
247             /* EWALD ELECTROSTATICS */
248
249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
250             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
251             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
252             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
253             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
254
255             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
256             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
257             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
258             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
259             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
260             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
261             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
262             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
263             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
264             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
265
266             /* Analytical LJ-PME */
267             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
268             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
269             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
270             exponent         = gmx_simd_exp_d(-ewcljrsq);
271             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
272             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
273             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
274             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
275             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
276             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
277             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
278             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _fjsp_add_v2r8(velecsum,velec);
282             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
283
284             fscal            = _fjsp_add_v2r8(felec,fvdw);
285
286             /* Update vectorial force */
287             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
288             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
289             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
290             
291             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
292             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
293             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _fjsp_mul_v2r8(iq1,jq0);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
308             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
309             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
310             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
311
312             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
313             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
314             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
315             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
316             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
317             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
318             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
319             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
320             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
321             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velecsum         = _fjsp_add_v2r8(velecsum,velec);
325
326             fscal            = felec;
327
328             /* Update vectorial force */
329             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
330             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
331             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
332             
333             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
334             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
335             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq20             = _fjsp_mul_v2r8(iq2,jq0);
345
346             /* EWALD ELECTROSTATICS */
347
348             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
349             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
350             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
351             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
352             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
353
354             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
355             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
356             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
357             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
358             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
359             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
360             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
361             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
362             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
363             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velecsum         = _fjsp_add_v2r8(velecsum,velec);
367
368             fscal            = felec;
369
370             /* Update vectorial force */
371             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
372             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
373             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
374             
375             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
376             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
377             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
378
379             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
380
381             /* Inner loop uses 159 flops */
382         }
383
384         if(jidx<j_index_end)
385         {
386
387             jnrA             = jjnr[jidx];
388             j_coord_offsetA  = DIM*jnrA;
389
390             /* load j atom coordinates */
391             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
392                                               &jx0,&jy0,&jz0);
393
394             /* Calculate displacement vector */
395             dx00             = _fjsp_sub_v2r8(ix0,jx0);
396             dy00             = _fjsp_sub_v2r8(iy0,jy0);
397             dz00             = _fjsp_sub_v2r8(iz0,jz0);
398             dx10             = _fjsp_sub_v2r8(ix1,jx0);
399             dy10             = _fjsp_sub_v2r8(iy1,jy0);
400             dz10             = _fjsp_sub_v2r8(iz1,jz0);
401             dx20             = _fjsp_sub_v2r8(ix2,jx0);
402             dy20             = _fjsp_sub_v2r8(iy2,jy0);
403             dz20             = _fjsp_sub_v2r8(iz2,jz0);
404
405             /* Calculate squared distance and things based on it */
406             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
407             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
408             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
409
410             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
411             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
412             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
413
414             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
415             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
416             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
417
418             /* Load parameters for j particles */
419             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
420             vdwjidx0A        = 2*vdwtype[jnrA+0];
421
422             fjx0             = _fjsp_setzero_v2r8();
423             fjy0             = _fjsp_setzero_v2r8();
424             fjz0             = _fjsp_setzero_v2r8();
425
426             /**************************
427              * CALCULATE INTERACTIONS *
428              **************************/
429
430             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
431
432             /* Compute parameters for interactions between i and j atoms */
433             qq00             = _fjsp_mul_v2r8(iq0,jq0);
434             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
435
436             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
437
438             /* EWALD ELECTROSTATICS */
439
440             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
441             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
442             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
443             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
444             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
445
446             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
447             ewtabD           = _fjsp_setzero_v2r8();
448             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
449             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
450             ewtabFn          = _fjsp_setzero_v2r8();
451             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
452             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
453             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
454             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
455             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
456
457             /* Analytical LJ-PME */
458             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
459             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
460             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
461             exponent         = gmx_simd_exp_d(-ewcljrsq);
462             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
463             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
464             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
465             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
466             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
467             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
468             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
469             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
470
471             /* Update potential sum for this i atom from the interaction with this j atom. */
472             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
473             velecsum         = _fjsp_add_v2r8(velecsum,velec);
474             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
475             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
476
477             fscal            = _fjsp_add_v2r8(felec,fvdw);
478
479             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
480
481             /* Update vectorial force */
482             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
483             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
484             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
485             
486             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
487             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
488             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
495
496             /* Compute parameters for interactions between i and j atoms */
497             qq10             = _fjsp_mul_v2r8(iq1,jq0);
498
499             /* EWALD ELECTROSTATICS */
500
501             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
502             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
503             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
504             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
505             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
506
507             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
508             ewtabD           = _fjsp_setzero_v2r8();
509             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
510             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
511             ewtabFn          = _fjsp_setzero_v2r8();
512             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
513             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
514             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
515             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
516             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
520             velecsum         = _fjsp_add_v2r8(velecsum,velec);
521
522             fscal            = felec;
523
524             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
525
526             /* Update vectorial force */
527             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
528             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
529             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
530             
531             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
532             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
533             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq20             = _fjsp_mul_v2r8(iq2,jq0);
543
544             /* EWALD ELECTROSTATICS */
545
546             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
547             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
548             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
549             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
550             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
551
552             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
553             ewtabD           = _fjsp_setzero_v2r8();
554             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
555             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
556             ewtabFn          = _fjsp_setzero_v2r8();
557             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
558             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
559             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
560             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
561             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
565             velecsum         = _fjsp_add_v2r8(velecsum,velec);
566
567             fscal            = felec;
568
569             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
570
571             /* Update vectorial force */
572             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
573             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
574             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
575             
576             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
577             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
578             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
579
580             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
581
582             /* Inner loop uses 159 flops */
583         }
584
585         /* End of innermost loop */
586
587         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
588                                               f+i_coord_offset,fshift+i_shift_offset);
589
590         ggid                        = gid[iidx];
591         /* Update potential energies */
592         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
593         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
594
595         /* Increment number of inner iterations */
596         inneriter                  += j_index_end - j_index_start;
597
598         /* Outer loop uses 20 flops */
599     }
600
601     /* Increment number of outer iterations */
602     outeriter        += nri;
603
604     /* Update outer/inner flops */
605
606     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
607 }
608 /*
609  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sparc64_hpc_ace_double
610  * Electrostatics interaction: Ewald
611  * VdW interaction:            LJEwald
612  * Geometry:                   Water3-Particle
613  * Calculate force/pot:        Force
614  */
615 void
616 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sparc64_hpc_ace_double
617                     (t_nblist                    * gmx_restrict       nlist,
618                      rvec                        * gmx_restrict          xx,
619                      rvec                        * gmx_restrict          ff,
620                      t_forcerec                  * gmx_restrict          fr,
621                      t_mdatoms                   * gmx_restrict     mdatoms,
622                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
623                      t_nrnb                      * gmx_restrict        nrnb)
624 {
625     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
626      * just 0 for non-waters.
627      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
628      * jnr indices corresponding to data put in the four positions in the SIMD register.
629      */
630     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
631     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
632     int              jnrA,jnrB;
633     int              j_coord_offsetA,j_coord_offsetB;
634     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
635     real             rcutoff_scalar;
636     real             *shiftvec,*fshift,*x,*f;
637     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
638     int              vdwioffset0;
639     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
640     int              vdwioffset1;
641     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
642     int              vdwioffset2;
643     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
644     int              vdwjidx0A,vdwjidx0B;
645     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
646     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
647     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
648     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
649     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
650     real             *charge;
651     int              nvdwtype;
652     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
653     int              *vdwtype;
654     real             *vdwparam;
655     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
656     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
657     _fjsp_v2r8           c6grid_00;
658     _fjsp_v2r8           c6grid_10;
659     _fjsp_v2r8           c6grid_20;
660     real                 *vdwgridparam;
661     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
662     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
663     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
664     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
665     real             *ewtab;
666     _fjsp_v2r8       itab_tmp;
667     _fjsp_v2r8       dummy_mask,cutoff_mask;
668     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
669     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
670     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
671
672     x                = xx[0];
673     f                = ff[0];
674
675     nri              = nlist->nri;
676     iinr             = nlist->iinr;
677     jindex           = nlist->jindex;
678     jjnr             = nlist->jjnr;
679     shiftidx         = nlist->shift;
680     gid              = nlist->gid;
681     shiftvec         = fr->shift_vec[0];
682     fshift           = fr->fshift[0];
683     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
684     charge           = mdatoms->chargeA;
685     nvdwtype         = fr->ntype;
686     vdwparam         = fr->nbfp;
687     vdwtype          = mdatoms->typeA;
688     vdwgridparam     = fr->ljpme_c6grid;
689     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
690     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
691     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
692
693     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
694     ewtab            = fr->ic->tabq_coul_F;
695     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
696     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
697
698     /* Setup water-specific parameters */
699     inr              = nlist->iinr[0];
700     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
701     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
702     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
703     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
704
705     /* Avoid stupid compiler warnings */
706     jnrA = jnrB = 0;
707     j_coord_offsetA = 0;
708     j_coord_offsetB = 0;
709
710     outeriter        = 0;
711     inneriter        = 0;
712
713     /* Start outer loop over neighborlists */
714     for(iidx=0; iidx<nri; iidx++)
715     {
716         /* Load shift vector for this list */
717         i_shift_offset   = DIM*shiftidx[iidx];
718
719         /* Load limits for loop over neighbors */
720         j_index_start    = jindex[iidx];
721         j_index_end      = jindex[iidx+1];
722
723         /* Get outer coordinate index */
724         inr              = iinr[iidx];
725         i_coord_offset   = DIM*inr;
726
727         /* Load i particle coords and add shift vector */
728         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
729                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
730
731         fix0             = _fjsp_setzero_v2r8();
732         fiy0             = _fjsp_setzero_v2r8();
733         fiz0             = _fjsp_setzero_v2r8();
734         fix1             = _fjsp_setzero_v2r8();
735         fiy1             = _fjsp_setzero_v2r8();
736         fiz1             = _fjsp_setzero_v2r8();
737         fix2             = _fjsp_setzero_v2r8();
738         fiy2             = _fjsp_setzero_v2r8();
739         fiz2             = _fjsp_setzero_v2r8();
740
741         /* Start inner kernel loop */
742         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
743         {
744
745             /* Get j neighbor index, and coordinate index */
746             jnrA             = jjnr[jidx];
747             jnrB             = jjnr[jidx+1];
748             j_coord_offsetA  = DIM*jnrA;
749             j_coord_offsetB  = DIM*jnrB;
750
751             /* load j atom coordinates */
752             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
753                                               &jx0,&jy0,&jz0);
754
755             /* Calculate displacement vector */
756             dx00             = _fjsp_sub_v2r8(ix0,jx0);
757             dy00             = _fjsp_sub_v2r8(iy0,jy0);
758             dz00             = _fjsp_sub_v2r8(iz0,jz0);
759             dx10             = _fjsp_sub_v2r8(ix1,jx0);
760             dy10             = _fjsp_sub_v2r8(iy1,jy0);
761             dz10             = _fjsp_sub_v2r8(iz1,jz0);
762             dx20             = _fjsp_sub_v2r8(ix2,jx0);
763             dy20             = _fjsp_sub_v2r8(iy2,jy0);
764             dz20             = _fjsp_sub_v2r8(iz2,jz0);
765
766             /* Calculate squared distance and things based on it */
767             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
768             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
769             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
770
771             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
772             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
773             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
774
775             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
776             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
777             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
778
779             /* Load parameters for j particles */
780             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
781             vdwjidx0A        = 2*vdwtype[jnrA+0];
782             vdwjidx0B        = 2*vdwtype[jnrB+0];
783
784             fjx0             = _fjsp_setzero_v2r8();
785             fjy0             = _fjsp_setzero_v2r8();
786             fjz0             = _fjsp_setzero_v2r8();
787
788             /**************************
789              * CALCULATE INTERACTIONS *
790              **************************/
791
792             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
793
794             /* Compute parameters for interactions between i and j atoms */
795             qq00             = _fjsp_mul_v2r8(iq0,jq0);
796             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
797                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
798
799             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
800                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
801
802             /* EWALD ELECTROSTATICS */
803
804             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
805             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
806             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
807             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
808             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
809
810             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
811                                          &ewtabF,&ewtabFn);
812             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
813             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
814
815             /* Analytical LJ-PME */
816             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
817             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
818             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
819             exponent         = gmx_simd_exp_d(-ewcljrsq);
820             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
821             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
822             /* f6A = 6 * C6grid * (1 - poly) */
823             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
824             /* f6B = C6grid * exponent * beta^6 */
825             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
826             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
827             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
828
829             fscal            = _fjsp_add_v2r8(felec,fvdw);
830
831             /* Update vectorial force */
832             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
833             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
834             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
835             
836             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
837             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
838             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
839
840             /**************************
841              * CALCULATE INTERACTIONS *
842              **************************/
843
844             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
845
846             /* Compute parameters for interactions between i and j atoms */
847             qq10             = _fjsp_mul_v2r8(iq1,jq0);
848
849             /* EWALD ELECTROSTATICS */
850
851             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
852             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
853             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
854             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
855             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
856
857             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
858                                          &ewtabF,&ewtabFn);
859             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
860             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
861
862             fscal            = felec;
863
864             /* Update vectorial force */
865             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
866             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
867             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
868             
869             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
870             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
871             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
872
873             /**************************
874              * CALCULATE INTERACTIONS *
875              **************************/
876
877             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
878
879             /* Compute parameters for interactions between i and j atoms */
880             qq20             = _fjsp_mul_v2r8(iq2,jq0);
881
882             /* EWALD ELECTROSTATICS */
883
884             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
885             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
886             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
887             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
888             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
889
890             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
891                                          &ewtabF,&ewtabFn);
892             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
893             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
894
895             fscal            = felec;
896
897             /* Update vectorial force */
898             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
899             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
900             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
901             
902             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
903             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
904             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
905
906             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
907
908             /* Inner loop uses 142 flops */
909         }
910
911         if(jidx<j_index_end)
912         {
913
914             jnrA             = jjnr[jidx];
915             j_coord_offsetA  = DIM*jnrA;
916
917             /* load j atom coordinates */
918             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
919                                               &jx0,&jy0,&jz0);
920
921             /* Calculate displacement vector */
922             dx00             = _fjsp_sub_v2r8(ix0,jx0);
923             dy00             = _fjsp_sub_v2r8(iy0,jy0);
924             dz00             = _fjsp_sub_v2r8(iz0,jz0);
925             dx10             = _fjsp_sub_v2r8(ix1,jx0);
926             dy10             = _fjsp_sub_v2r8(iy1,jy0);
927             dz10             = _fjsp_sub_v2r8(iz1,jz0);
928             dx20             = _fjsp_sub_v2r8(ix2,jx0);
929             dy20             = _fjsp_sub_v2r8(iy2,jy0);
930             dz20             = _fjsp_sub_v2r8(iz2,jz0);
931
932             /* Calculate squared distance and things based on it */
933             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
934             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
935             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
936
937             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
938             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
939             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
940
941             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
942             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
943             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
944
945             /* Load parameters for j particles */
946             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
947             vdwjidx0A        = 2*vdwtype[jnrA+0];
948
949             fjx0             = _fjsp_setzero_v2r8();
950             fjy0             = _fjsp_setzero_v2r8();
951             fjz0             = _fjsp_setzero_v2r8();
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
958
959             /* Compute parameters for interactions between i and j atoms */
960             qq00             = _fjsp_mul_v2r8(iq0,jq0);
961             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
962
963             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
964
965             /* EWALD ELECTROSTATICS */
966
967             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
968             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
969             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
970             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
971             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
972
973             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
974             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
975             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
976
977             /* Analytical LJ-PME */
978             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
979             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
980             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
981             exponent         = gmx_simd_exp_d(-ewcljrsq);
982             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
983             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
984             /* f6A = 6 * C6grid * (1 - poly) */
985             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
986             /* f6B = C6grid * exponent * beta^6 */
987             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
988             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
989             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
990
991             fscal            = _fjsp_add_v2r8(felec,fvdw);
992
993             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
994
995             /* Update vectorial force */
996             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
997             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
998             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
999             
1000             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1001             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1002             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1003
1004             /**************************
1005              * CALCULATE INTERACTIONS *
1006              **************************/
1007
1008             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1012
1013             /* EWALD ELECTROSTATICS */
1014
1015             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1016             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1017             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1018             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1019             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1020
1021             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1022             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1023             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1024
1025             fscal            = felec;
1026
1027             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1028
1029             /* Update vectorial force */
1030             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1031             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1032             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1033             
1034             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1035             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1036             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1046
1047             /* EWALD ELECTROSTATICS */
1048
1049             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1050             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1051             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1052             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1053             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1054
1055             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1056             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1057             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1058
1059             fscal            = felec;
1060
1061             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1062
1063             /* Update vectorial force */
1064             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1065             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1066             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1067             
1068             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1069             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1070             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1071
1072             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1073
1074             /* Inner loop uses 142 flops */
1075         }
1076
1077         /* End of innermost loop */
1078
1079         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1080                                               f+i_coord_offset,fshift+i_shift_offset);
1081
1082         /* Increment number of inner iterations */
1083         inneriter                  += j_index_end - j_index_start;
1084
1085         /* Outer loop uses 18 flops */
1086     }
1087
1088     /* Increment number of outer iterations */
1089     outeriter        += nri;
1090
1091     /* Update outer/inner flops */
1092
1093     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*142);
1094 }