Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8           c6grid_00;
101     _fjsp_v2r8           c6grid_10;
102     _fjsp_v2r8           c6grid_20;
103     real                 *vdwgridparam;
104     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
106     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
107     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     _fjsp_v2r8       itab_tmp;
110     _fjsp_v2r8       dummy_mask,cutoff_mask;
111     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
112     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
113     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
114
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
133     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
134     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
135
136     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
139     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
144     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
145     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _fjsp_setzero_v2r8();
175         fiy0             = _fjsp_setzero_v2r8();
176         fiz0             = _fjsp_setzero_v2r8();
177         fix1             = _fjsp_setzero_v2r8();
178         fiy1             = _fjsp_setzero_v2r8();
179         fiz1             = _fjsp_setzero_v2r8();
180         fix2             = _fjsp_setzero_v2r8();
181         fiy2             = _fjsp_setzero_v2r8();
182         fiz2             = _fjsp_setzero_v2r8();
183
184         /* Reset potential sums */
185         velecsum         = _fjsp_setzero_v2r8();
186         vvdwsum          = _fjsp_setzero_v2r8();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _fjsp_sub_v2r8(ix0,jx0);
204             dy00             = _fjsp_sub_v2r8(iy0,jy0);
205             dz00             = _fjsp_sub_v2r8(iz0,jz0);
206             dx10             = _fjsp_sub_v2r8(ix1,jx0);
207             dy10             = _fjsp_sub_v2r8(iy1,jy0);
208             dz10             = _fjsp_sub_v2r8(iz1,jz0);
209             dx20             = _fjsp_sub_v2r8(ix2,jx0);
210             dy20             = _fjsp_sub_v2r8(iy2,jy0);
211             dz20             = _fjsp_sub_v2r8(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
215             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
216             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
217
218             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
219             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
220             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
221
222             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
223             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
224             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _fjsp_setzero_v2r8();
232             fjy0             = _fjsp_setzero_v2r8();
233             fjz0             = _fjsp_setzero_v2r8();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _fjsp_mul_v2r8(iq0,jq0);
243             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
245
246             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
247                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
248
249             /* EWALD ELECTROSTATICS */
250
251             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
252             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
253             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
254             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
255             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
256
257             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
258             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
259             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
260             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
261             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
262             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
263             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
264             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
265             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
266             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
267
268             /* Analytical LJ-PME */
269             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
270             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
271             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
272             exponent         = gmx_simd_exp_d(ewcljrsq);
273             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
274             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
275             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
276             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
277             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
278             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
279             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
280             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _fjsp_add_v2r8(velecsum,velec);
284             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
285
286             fscal            = _fjsp_add_v2r8(felec,fvdw);
287
288             /* Update vectorial force */
289             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
290             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
291             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
292             
293             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
294             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
295             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _fjsp_mul_v2r8(iq1,jq0);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
310             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
311             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
312             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
313
314             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
315             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
316             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
317             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
318             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
319             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
320             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
321             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
322             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
323             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velecsum         = _fjsp_add_v2r8(velecsum,velec);
327
328             fscal            = felec;
329
330             /* Update vectorial force */
331             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
332             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
333             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
334             
335             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
336             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
337             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq20             = _fjsp_mul_v2r8(iq2,jq0);
347
348             /* EWALD ELECTROSTATICS */
349
350             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
351             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
352             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
353             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
354             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
355
356             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
357             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
358             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
359             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
360             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
361             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
362             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
363             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
364             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
365             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velecsum         = _fjsp_add_v2r8(velecsum,velec);
369
370             fscal            = felec;
371
372             /* Update vectorial force */
373             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
374             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
375             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
376             
377             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
378             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
379             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
380
381             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
382
383             /* Inner loop uses 159 flops */
384         }
385
386         if(jidx<j_index_end)
387         {
388
389             jnrA             = jjnr[jidx];
390             j_coord_offsetA  = DIM*jnrA;
391
392             /* load j atom coordinates */
393             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
394                                               &jx0,&jy0,&jz0);
395
396             /* Calculate displacement vector */
397             dx00             = _fjsp_sub_v2r8(ix0,jx0);
398             dy00             = _fjsp_sub_v2r8(iy0,jy0);
399             dz00             = _fjsp_sub_v2r8(iz0,jz0);
400             dx10             = _fjsp_sub_v2r8(ix1,jx0);
401             dy10             = _fjsp_sub_v2r8(iy1,jy0);
402             dz10             = _fjsp_sub_v2r8(iz1,jz0);
403             dx20             = _fjsp_sub_v2r8(ix2,jx0);
404             dy20             = _fjsp_sub_v2r8(iy2,jy0);
405             dz20             = _fjsp_sub_v2r8(iz2,jz0);
406
407             /* Calculate squared distance and things based on it */
408             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
409             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
410             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
411
412             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
413             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
414             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
415
416             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
417             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
418             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
419
420             /* Load parameters for j particles */
421             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
422             vdwjidx0A        = 2*vdwtype[jnrA+0];
423
424             fjx0             = _fjsp_setzero_v2r8();
425             fjy0             = _fjsp_setzero_v2r8();
426             fjz0             = _fjsp_setzero_v2r8();
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
433
434             /* Compute parameters for interactions between i and j atoms */
435             qq00             = _fjsp_mul_v2r8(iq0,jq0);
436             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
437                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
438
439             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
440                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
441
442             /* EWALD ELECTROSTATICS */
443
444             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
445             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
446             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
447             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
448             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
449
450             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
451             ewtabD           = _fjsp_setzero_v2r8();
452             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
453             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
454             ewtabFn          = _fjsp_setzero_v2r8();
455             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
456             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
457             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
458             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
459             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
460
461             /* Analytical LJ-PME */
462             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
463             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
464             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
465             exponent         = gmx_simd_exp_d(ewcljrsq);
466             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
467             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
468             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
469             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
470             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
471             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
472             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
473             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
477             velecsum         = _fjsp_add_v2r8(velecsum,velec);
478             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
479             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
480
481             fscal            = _fjsp_add_v2r8(felec,fvdw);
482
483             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
484
485             /* Update vectorial force */
486             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
487             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
488             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
489             
490             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
491             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
492             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq10             = _fjsp_mul_v2r8(iq1,jq0);
502
503             /* EWALD ELECTROSTATICS */
504
505             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
506             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
507             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
508             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
509             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
510
511             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
512             ewtabD           = _fjsp_setzero_v2r8();
513             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
514             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
515             ewtabFn          = _fjsp_setzero_v2r8();
516             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
517             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
518             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
519             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
520             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
524             velecsum         = _fjsp_add_v2r8(velecsum,velec);
525
526             fscal            = felec;
527
528             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
529
530             /* Update vectorial force */
531             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
532             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
533             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
534             
535             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
536             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
537             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq20             = _fjsp_mul_v2r8(iq2,jq0);
547
548             /* EWALD ELECTROSTATICS */
549
550             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
551             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
552             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
553             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
554             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
555
556             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
557             ewtabD           = _fjsp_setzero_v2r8();
558             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
559             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
560             ewtabFn          = _fjsp_setzero_v2r8();
561             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
562             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
563             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
564             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
565             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
569             velecsum         = _fjsp_add_v2r8(velecsum,velec);
570
571             fscal            = felec;
572
573             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
574
575             /* Update vectorial force */
576             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
577             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
578             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
579             
580             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
581             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
582             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
583
584             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
585
586             /* Inner loop uses 159 flops */
587         }
588
589         /* End of innermost loop */
590
591         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
592                                               f+i_coord_offset,fshift+i_shift_offset);
593
594         ggid                        = gid[iidx];
595         /* Update potential energies */
596         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
597         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
598
599         /* Increment number of inner iterations */
600         inneriter                  += j_index_end - j_index_start;
601
602         /* Outer loop uses 20 flops */
603     }
604
605     /* Increment number of outer iterations */
606     outeriter        += nri;
607
608     /* Update outer/inner flops */
609
610     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
611 }
612 /*
613  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sparc64_hpc_ace_double
614  * Electrostatics interaction: Ewald
615  * VdW interaction:            LJEwald
616  * Geometry:                   Water3-Particle
617  * Calculate force/pot:        Force
618  */
619 void
620 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sparc64_hpc_ace_double
621                     (t_nblist                    * gmx_restrict       nlist,
622                      rvec                        * gmx_restrict          xx,
623                      rvec                        * gmx_restrict          ff,
624                      t_forcerec                  * gmx_restrict          fr,
625                      t_mdatoms                   * gmx_restrict     mdatoms,
626                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
627                      t_nrnb                      * gmx_restrict        nrnb)
628 {
629     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
630      * just 0 for non-waters.
631      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
632      * jnr indices corresponding to data put in the four positions in the SIMD register.
633      */
634     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
635     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
636     int              jnrA,jnrB;
637     int              j_coord_offsetA,j_coord_offsetB;
638     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
639     real             rcutoff_scalar;
640     real             *shiftvec,*fshift,*x,*f;
641     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
642     int              vdwioffset0;
643     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
644     int              vdwioffset1;
645     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
646     int              vdwioffset2;
647     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
648     int              vdwjidx0A,vdwjidx0B;
649     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
650     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
651     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
652     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
653     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
654     real             *charge;
655     int              nvdwtype;
656     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
657     int              *vdwtype;
658     real             *vdwparam;
659     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
660     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
661     _fjsp_v2r8           c6grid_00;
662     _fjsp_v2r8           c6grid_10;
663     _fjsp_v2r8           c6grid_20;
664     real                 *vdwgridparam;
665     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
666     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
667     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
668     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
669     real             *ewtab;
670     _fjsp_v2r8       itab_tmp;
671     _fjsp_v2r8       dummy_mask,cutoff_mask;
672     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
673     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
674     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
675
676     x                = xx[0];
677     f                = ff[0];
678
679     nri              = nlist->nri;
680     iinr             = nlist->iinr;
681     jindex           = nlist->jindex;
682     jjnr             = nlist->jjnr;
683     shiftidx         = nlist->shift;
684     gid              = nlist->gid;
685     shiftvec         = fr->shift_vec[0];
686     fshift           = fr->fshift[0];
687     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
688     charge           = mdatoms->chargeA;
689     nvdwtype         = fr->ntype;
690     vdwparam         = fr->nbfp;
691     vdwtype          = mdatoms->typeA;
692     vdwgridparam     = fr->ljpme_c6grid;
693     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
694     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
695     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
696
697     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
698     ewtab            = fr->ic->tabq_coul_F;
699     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
700     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
701
702     /* Setup water-specific parameters */
703     inr              = nlist->iinr[0];
704     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
705     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
706     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
707     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
708
709     /* Avoid stupid compiler warnings */
710     jnrA = jnrB = 0;
711     j_coord_offsetA = 0;
712     j_coord_offsetB = 0;
713
714     outeriter        = 0;
715     inneriter        = 0;
716
717     /* Start outer loop over neighborlists */
718     for(iidx=0; iidx<nri; iidx++)
719     {
720         /* Load shift vector for this list */
721         i_shift_offset   = DIM*shiftidx[iidx];
722
723         /* Load limits for loop over neighbors */
724         j_index_start    = jindex[iidx];
725         j_index_end      = jindex[iidx+1];
726
727         /* Get outer coordinate index */
728         inr              = iinr[iidx];
729         i_coord_offset   = DIM*inr;
730
731         /* Load i particle coords and add shift vector */
732         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
733                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
734
735         fix0             = _fjsp_setzero_v2r8();
736         fiy0             = _fjsp_setzero_v2r8();
737         fiz0             = _fjsp_setzero_v2r8();
738         fix1             = _fjsp_setzero_v2r8();
739         fiy1             = _fjsp_setzero_v2r8();
740         fiz1             = _fjsp_setzero_v2r8();
741         fix2             = _fjsp_setzero_v2r8();
742         fiy2             = _fjsp_setzero_v2r8();
743         fiz2             = _fjsp_setzero_v2r8();
744
745         /* Start inner kernel loop */
746         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
747         {
748
749             /* Get j neighbor index, and coordinate index */
750             jnrA             = jjnr[jidx];
751             jnrB             = jjnr[jidx+1];
752             j_coord_offsetA  = DIM*jnrA;
753             j_coord_offsetB  = DIM*jnrB;
754
755             /* load j atom coordinates */
756             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
757                                               &jx0,&jy0,&jz0);
758
759             /* Calculate displacement vector */
760             dx00             = _fjsp_sub_v2r8(ix0,jx0);
761             dy00             = _fjsp_sub_v2r8(iy0,jy0);
762             dz00             = _fjsp_sub_v2r8(iz0,jz0);
763             dx10             = _fjsp_sub_v2r8(ix1,jx0);
764             dy10             = _fjsp_sub_v2r8(iy1,jy0);
765             dz10             = _fjsp_sub_v2r8(iz1,jz0);
766             dx20             = _fjsp_sub_v2r8(ix2,jx0);
767             dy20             = _fjsp_sub_v2r8(iy2,jy0);
768             dz20             = _fjsp_sub_v2r8(iz2,jz0);
769
770             /* Calculate squared distance and things based on it */
771             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
772             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
773             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
774
775             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
776             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
777             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
778
779             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
780             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
781             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
782
783             /* Load parameters for j particles */
784             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
785             vdwjidx0A        = 2*vdwtype[jnrA+0];
786             vdwjidx0B        = 2*vdwtype[jnrB+0];
787
788             fjx0             = _fjsp_setzero_v2r8();
789             fjy0             = _fjsp_setzero_v2r8();
790             fjz0             = _fjsp_setzero_v2r8();
791
792             /**************************
793              * CALCULATE INTERACTIONS *
794              **************************/
795
796             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
797
798             /* Compute parameters for interactions between i and j atoms */
799             qq00             = _fjsp_mul_v2r8(iq0,jq0);
800             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
801                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
802
803             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
804                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
805
806             /* EWALD ELECTROSTATICS */
807
808             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
809             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
810             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
811             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
812             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
813
814             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
815                                          &ewtabF,&ewtabFn);
816             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
817             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
818
819             /* Analytical LJ-PME */
820             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
821             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
822             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
823             exponent         = gmx_simd_exp_d(ewcljrsq);
824             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
825             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
826             /* f6A = 6 * C6grid * (1 - poly) */
827             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
828             /* f6B = C6grid * exponent * beta^6 */
829             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
830             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
831             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
832
833             fscal            = _fjsp_add_v2r8(felec,fvdw);
834
835             /* Update vectorial force */
836             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
837             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
838             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
839             
840             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
841             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
842             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
843
844             /**************************
845              * CALCULATE INTERACTIONS *
846              **************************/
847
848             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
849
850             /* Compute parameters for interactions between i and j atoms */
851             qq10             = _fjsp_mul_v2r8(iq1,jq0);
852
853             /* EWALD ELECTROSTATICS */
854
855             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
856             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
857             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
858             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
859             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
860
861             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
862                                          &ewtabF,&ewtabFn);
863             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
864             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
865
866             fscal            = felec;
867
868             /* Update vectorial force */
869             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
870             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
871             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
872             
873             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
874             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
875             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
876
877             /**************************
878              * CALCULATE INTERACTIONS *
879              **************************/
880
881             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq20             = _fjsp_mul_v2r8(iq2,jq0);
885
886             /* EWALD ELECTROSTATICS */
887
888             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
889             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
890             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
891             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
892             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
893
894             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
895                                          &ewtabF,&ewtabFn);
896             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
897             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
898
899             fscal            = felec;
900
901             /* Update vectorial force */
902             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
903             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
904             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
905             
906             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
907             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
908             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
909
910             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
911
912             /* Inner loop uses 142 flops */
913         }
914
915         if(jidx<j_index_end)
916         {
917
918             jnrA             = jjnr[jidx];
919             j_coord_offsetA  = DIM*jnrA;
920
921             /* load j atom coordinates */
922             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
923                                               &jx0,&jy0,&jz0);
924
925             /* Calculate displacement vector */
926             dx00             = _fjsp_sub_v2r8(ix0,jx0);
927             dy00             = _fjsp_sub_v2r8(iy0,jy0);
928             dz00             = _fjsp_sub_v2r8(iz0,jz0);
929             dx10             = _fjsp_sub_v2r8(ix1,jx0);
930             dy10             = _fjsp_sub_v2r8(iy1,jy0);
931             dz10             = _fjsp_sub_v2r8(iz1,jz0);
932             dx20             = _fjsp_sub_v2r8(ix2,jx0);
933             dy20             = _fjsp_sub_v2r8(iy2,jy0);
934             dz20             = _fjsp_sub_v2r8(iz2,jz0);
935
936             /* Calculate squared distance and things based on it */
937             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
938             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
939             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
940
941             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
942             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
943             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
944
945             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
946             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
947             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
948
949             /* Load parameters for j particles */
950             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
951             vdwjidx0A        = 2*vdwtype[jnrA+0];
952
953             fjx0             = _fjsp_setzero_v2r8();
954             fjy0             = _fjsp_setzero_v2r8();
955             fjz0             = _fjsp_setzero_v2r8();
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq00             = _fjsp_mul_v2r8(iq0,jq0);
965             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
966                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
967
968             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
969                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
970
971             /* EWALD ELECTROSTATICS */
972
973             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
974             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
975             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
976             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
977             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
978
979             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
980             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
981             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
982
983             /* Analytical LJ-PME */
984             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
985             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
986             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
987             exponent         = gmx_simd_exp_d(ewcljrsq);
988             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
989             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
990             /* f6A = 6 * C6grid * (1 - poly) */
991             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
992             /* f6B = C6grid * exponent * beta^6 */
993             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
994             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
995             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
996
997             fscal            = _fjsp_add_v2r8(felec,fvdw);
998
999             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1000
1001             /* Update vectorial force */
1002             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1003             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1004             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1005             
1006             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1007             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1008             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1018
1019             /* EWALD ELECTROSTATICS */
1020
1021             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1022             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1023             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1024             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1025             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1026
1027             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1028             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1029             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1030
1031             fscal            = felec;
1032
1033             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1034
1035             /* Update vectorial force */
1036             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1037             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1038             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1039             
1040             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1041             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1042             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1049
1050             /* Compute parameters for interactions between i and j atoms */
1051             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1052
1053             /* EWALD ELECTROSTATICS */
1054
1055             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1056             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1057             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1058             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1059             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1060
1061             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1062             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1063             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1064
1065             fscal            = felec;
1066
1067             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1068
1069             /* Update vectorial force */
1070             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1071             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1072             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1073             
1074             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1075             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1076             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1077
1078             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1079
1080             /* Inner loop uses 142 flops */
1081         }
1082
1083         /* End of innermost loop */
1084
1085         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1086                                               f+i_coord_offset,fshift+i_shift_offset);
1087
1088         /* Increment number of inner iterations */
1089         inneriter                  += j_index_end - j_index_start;
1090
1091         /* Outer loop uses 18 flops */
1092     }
1093
1094     /* Increment number of outer iterations */
1095     outeriter        += nri;
1096
1097     /* Update outer/inner flops */
1098
1099     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*142);
1100 }