107d735cbad3f26bb22c6f367180f1d91b93bcaf
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8           c6grid_00;
93     real                 *vdwgridparam;
94     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
96     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
97     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     real             *ewtab;
99     _fjsp_v2r8       itab_tmp;
100     _fjsp_v2r8       dummy_mask,cutoff_mask;
101     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
102     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
103     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
104
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121     vdwgridparam     = fr->ljpme_c6grid;
122     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
123     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
124     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
125
126     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
129     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _fjsp_setzero_v2r8();
157         fiy0             = _fjsp_setzero_v2r8();
158         fiz0             = _fjsp_setzero_v2r8();
159
160         /* Load parameters for i particles */
161         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _fjsp_setzero_v2r8();
166         vvdwsum          = _fjsp_setzero_v2r8();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _fjsp_sub_v2r8(ix0,jx0);
184             dy00             = _fjsp_sub_v2r8(iy0,jy0);
185             dz00             = _fjsp_sub_v2r8(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
189
190             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
191
192             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _fjsp_mul_v2r8(iq0,jq0);
207             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
209
210             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
211                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
212
213             /* EWALD ELECTROSTATICS */
214
215             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
216             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
217             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
218             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
219             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
220
221             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
222             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
223             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
224             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
225             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
226             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
227             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
228             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
229             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
230             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
231
232             /* Analytical LJ-PME */
233             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
234             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
235             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
236             exponent         = gmx_simd_exp_d(ewcljrsq);
237             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
238             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
239             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
240             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
241             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
242             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
243             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
244             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velecsum         = _fjsp_add_v2r8(velecsum,velec);
248             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
249
250             fscal            = _fjsp_add_v2r8(felec,fvdw);
251
252             /* Update vectorial force */
253             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
254             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
255             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
256             
257             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
258
259             /* Inner loop uses 68 flops */
260         }
261
262         if(jidx<j_index_end)
263         {
264
265             jnrA             = jjnr[jidx];
266             j_coord_offsetA  = DIM*jnrA;
267
268             /* load j atom coordinates */
269             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
270                                               &jx0,&jy0,&jz0);
271
272             /* Calculate displacement vector */
273             dx00             = _fjsp_sub_v2r8(ix0,jx0);
274             dy00             = _fjsp_sub_v2r8(iy0,jy0);
275             dz00             = _fjsp_sub_v2r8(iz0,jz0);
276
277             /* Calculate squared distance and things based on it */
278             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
279
280             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
281
282             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
283
284             /* Load parameters for j particles */
285             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
286             vdwjidx0A        = 2*vdwtype[jnrA+0];
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq00             = _fjsp_mul_v2r8(iq0,jq0);
296             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
297                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
298
299             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
300                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
301
302             /* EWALD ELECTROSTATICS */
303
304             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
305             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
306             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
307             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
308             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
309
310             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
311             ewtabD           = _fjsp_setzero_v2r8();
312             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
313             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
314             ewtabFn          = _fjsp_setzero_v2r8();
315             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
316             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
317             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
318             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
319             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
320
321             /* Analytical LJ-PME */
322             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
323             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
324             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
325             exponent         = gmx_simd_exp_d(ewcljrsq);
326             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
327             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
328             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
329             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
330             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
331             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
332             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
333             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
337             velecsum         = _fjsp_add_v2r8(velecsum,velec);
338             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
339             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
340
341             fscal            = _fjsp_add_v2r8(felec,fvdw);
342
343             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
344
345             /* Update vectorial force */
346             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
347             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
348             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
349             
350             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
351
352             /* Inner loop uses 68 flops */
353         }
354
355         /* End of innermost loop */
356
357         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
358                                               f+i_coord_offset,fshift+i_shift_offset);
359
360         ggid                        = gid[iidx];
361         /* Update potential energies */
362         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
363         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
364
365         /* Increment number of inner iterations */
366         inneriter                  += j_index_end - j_index_start;
367
368         /* Outer loop uses 9 flops */
369     }
370
371     /* Increment number of outer iterations */
372     outeriter        += nri;
373
374     /* Update outer/inner flops */
375
376     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
377 }
378 /*
379  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
380  * Electrostatics interaction: Ewald
381  * VdW interaction:            LJEwald
382  * Geometry:                   Particle-Particle
383  * Calculate force/pot:        Force
384  */
385 void
386 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
387                     (t_nblist                    * gmx_restrict       nlist,
388                      rvec                        * gmx_restrict          xx,
389                      rvec                        * gmx_restrict          ff,
390                      struct t_forcerec           * gmx_restrict          fr,
391                      t_mdatoms                   * gmx_restrict     mdatoms,
392                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
393                      t_nrnb                      * gmx_restrict        nrnb)
394 {
395     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
396      * just 0 for non-waters.
397      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
398      * jnr indices corresponding to data put in the four positions in the SIMD register.
399      */
400     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
401     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
402     int              jnrA,jnrB;
403     int              j_coord_offsetA,j_coord_offsetB;
404     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
405     real             rcutoff_scalar;
406     real             *shiftvec,*fshift,*x,*f;
407     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
408     int              vdwioffset0;
409     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
410     int              vdwjidx0A,vdwjidx0B;
411     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
412     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
413     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
414     real             *charge;
415     int              nvdwtype;
416     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
417     int              *vdwtype;
418     real             *vdwparam;
419     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
420     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
421     _fjsp_v2r8           c6grid_00;
422     real                 *vdwgridparam;
423     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
424     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
425     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
426     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
427     real             *ewtab;
428     _fjsp_v2r8       itab_tmp;
429     _fjsp_v2r8       dummy_mask,cutoff_mask;
430     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
431     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
432     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
433
434     x                = xx[0];
435     f                = ff[0];
436
437     nri              = nlist->nri;
438     iinr             = nlist->iinr;
439     jindex           = nlist->jindex;
440     jjnr             = nlist->jjnr;
441     shiftidx         = nlist->shift;
442     gid              = nlist->gid;
443     shiftvec         = fr->shift_vec[0];
444     fshift           = fr->fshift[0];
445     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
446     charge           = mdatoms->chargeA;
447     nvdwtype         = fr->ntype;
448     vdwparam         = fr->nbfp;
449     vdwtype          = mdatoms->typeA;
450     vdwgridparam     = fr->ljpme_c6grid;
451     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
452     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
453     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
454
455     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
456     ewtab            = fr->ic->tabq_coul_F;
457     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
458     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
459
460     /* Avoid stupid compiler warnings */
461     jnrA = jnrB = 0;
462     j_coord_offsetA = 0;
463     j_coord_offsetB = 0;
464
465     outeriter        = 0;
466     inneriter        = 0;
467
468     /* Start outer loop over neighborlists */
469     for(iidx=0; iidx<nri; iidx++)
470     {
471         /* Load shift vector for this list */
472         i_shift_offset   = DIM*shiftidx[iidx];
473
474         /* Load limits for loop over neighbors */
475         j_index_start    = jindex[iidx];
476         j_index_end      = jindex[iidx+1];
477
478         /* Get outer coordinate index */
479         inr              = iinr[iidx];
480         i_coord_offset   = DIM*inr;
481
482         /* Load i particle coords and add shift vector */
483         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
484
485         fix0             = _fjsp_setzero_v2r8();
486         fiy0             = _fjsp_setzero_v2r8();
487         fiz0             = _fjsp_setzero_v2r8();
488
489         /* Load parameters for i particles */
490         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
491         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
492
493         /* Start inner kernel loop */
494         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
495         {
496
497             /* Get j neighbor index, and coordinate index */
498             jnrA             = jjnr[jidx];
499             jnrB             = jjnr[jidx+1];
500             j_coord_offsetA  = DIM*jnrA;
501             j_coord_offsetB  = DIM*jnrB;
502
503             /* load j atom coordinates */
504             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
505                                               &jx0,&jy0,&jz0);
506
507             /* Calculate displacement vector */
508             dx00             = _fjsp_sub_v2r8(ix0,jx0);
509             dy00             = _fjsp_sub_v2r8(iy0,jy0);
510             dz00             = _fjsp_sub_v2r8(iz0,jz0);
511
512             /* Calculate squared distance and things based on it */
513             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
514
515             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
516
517             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
518
519             /* Load parameters for j particles */
520             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq00             = _fjsp_mul_v2r8(iq0,jq0);
532             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
533                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
534
535             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
536                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
537
538             /* EWALD ELECTROSTATICS */
539
540             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
542             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
543             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
544             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
545
546             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
547                                          &ewtabF,&ewtabFn);
548             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
549             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
550
551             /* Analytical LJ-PME */
552             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
553             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
554             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
555             exponent         = gmx_simd_exp_d(ewcljrsq);
556             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
557             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
558             /* f6A = 6 * C6grid * (1 - poly) */
559             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
560             /* f6B = C6grid * exponent * beta^6 */
561             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
562             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
563             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
564
565             fscal            = _fjsp_add_v2r8(felec,fvdw);
566
567             /* Update vectorial force */
568             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
569             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
570             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
571             
572             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
573
574             /* Inner loop uses 61 flops */
575         }
576
577         if(jidx<j_index_end)
578         {
579
580             jnrA             = jjnr[jidx];
581             j_coord_offsetA  = DIM*jnrA;
582
583             /* load j atom coordinates */
584             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
585                                               &jx0,&jy0,&jz0);
586
587             /* Calculate displacement vector */
588             dx00             = _fjsp_sub_v2r8(ix0,jx0);
589             dy00             = _fjsp_sub_v2r8(iy0,jy0);
590             dz00             = _fjsp_sub_v2r8(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
594
595             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
596
597             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
598
599             /* Load parameters for j particles */
600             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
601             vdwjidx0A        = 2*vdwtype[jnrA+0];
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq00             = _fjsp_mul_v2r8(iq0,jq0);
611             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
612                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
613
614             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
615                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
616
617             /* EWALD ELECTROSTATICS */
618
619             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
620             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
621             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
622             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
623             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
624
625             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
626             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
627             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
628
629             /* Analytical LJ-PME */
630             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
631             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
632             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
633             exponent         = gmx_simd_exp_d(ewcljrsq);
634             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
635             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
636             /* f6A = 6 * C6grid * (1 - poly) */
637             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
638             /* f6B = C6grid * exponent * beta^6 */
639             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
640             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
641             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
642
643             fscal            = _fjsp_add_v2r8(felec,fvdw);
644
645             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
646
647             /* Update vectorial force */
648             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
649             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
650             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
651             
652             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
653
654             /* Inner loop uses 61 flops */
655         }
656
657         /* End of innermost loop */
658
659         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
660                                               f+i_coord_offset,fshift+i_shift_offset);
661
662         /* Increment number of inner iterations */
663         inneriter                  += j_index_end - j_index_start;
664
665         /* Outer loop uses 7 flops */
666     }
667
668     /* Increment number of outer iterations */
669     outeriter        += nri;
670
671     /* Update outer/inner flops */
672
673     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
674 }