38a7346e1c1423c3431d634bb02ee7208a2a6aad
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
93     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
94     _fjsp_v2r8           c6grid_00;
95     real                 *vdwgridparam;
96     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
98     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
99     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     _fjsp_v2r8       itab_tmp;
102     _fjsp_v2r8       dummy_mask,cutoff_mask;
103     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
104     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
105     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
106
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
125     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
126     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
127
128     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
131     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _fjsp_setzero_v2r8();
159         fiy0             = _fjsp_setzero_v2r8();
160         fiz0             = _fjsp_setzero_v2r8();
161
162         /* Load parameters for i particles */
163         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
164         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _fjsp_setzero_v2r8();
168         vvdwsum          = _fjsp_setzero_v2r8();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _fjsp_sub_v2r8(ix0,jx0);
186             dy00             = _fjsp_sub_v2r8(iy0,jy0);
187             dz00             = _fjsp_sub_v2r8(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
191
192             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
193
194             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _fjsp_mul_v2r8(iq0,jq0);
209             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211
212             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
213                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
214
215             /* EWALD ELECTROSTATICS */
216
217             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
218             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
219             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
220             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
221             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
222
223             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
224             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
225             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
226             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
227             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
228             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
229             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
230             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
231             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
232             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
233
234             /* Analytical LJ-PME */
235             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
236             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
237             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
238             exponent         = gmx_simd_exp_d(-ewcljrsq);
239             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
240             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
241             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
242             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
243             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
244             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
245             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
246             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             velecsum         = _fjsp_add_v2r8(velecsum,velec);
250             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
251
252             fscal            = _fjsp_add_v2r8(felec,fvdw);
253
254             /* Update vectorial force */
255             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
256             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
257             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
258             
259             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
260
261             /* Inner loop uses 68 flops */
262         }
263
264         if(jidx<j_index_end)
265         {
266
267             jnrA             = jjnr[jidx];
268             j_coord_offsetA  = DIM*jnrA;
269
270             /* load j atom coordinates */
271             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
272                                               &jx0,&jy0,&jz0);
273
274             /* Calculate displacement vector */
275             dx00             = _fjsp_sub_v2r8(ix0,jx0);
276             dy00             = _fjsp_sub_v2r8(iy0,jy0);
277             dz00             = _fjsp_sub_v2r8(iz0,jz0);
278
279             /* Calculate squared distance and things based on it */
280             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
281
282             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
283
284             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
285
286             /* Load parameters for j particles */
287             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
288             vdwjidx0A        = 2*vdwtype[jnrA+0];
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq00             = _fjsp_mul_v2r8(iq0,jq0);
298             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
299
300             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
301
302             /* EWALD ELECTROSTATICS */
303
304             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
305             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
306             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
307             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
308             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
309
310             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
311             ewtabD           = _fjsp_setzero_v2r8();
312             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
313             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
314             ewtabFn          = _fjsp_setzero_v2r8();
315             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
316             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
317             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
318             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
319             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
320
321             /* Analytical LJ-PME */
322             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
323             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
324             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
325             exponent         = gmx_simd_exp_d(-ewcljrsq);
326             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
327             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
328             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
329             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
330             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
331             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
332             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
333             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
337             velecsum         = _fjsp_add_v2r8(velecsum,velec);
338             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
339             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
340
341             fscal            = _fjsp_add_v2r8(felec,fvdw);
342
343             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
344
345             /* Update vectorial force */
346             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
347             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
348             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
349             
350             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
351
352             /* Inner loop uses 68 flops */
353         }
354
355         /* End of innermost loop */
356
357         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
358                                               f+i_coord_offset,fshift+i_shift_offset);
359
360         ggid                        = gid[iidx];
361         /* Update potential energies */
362         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
363         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
364
365         /* Increment number of inner iterations */
366         inneriter                  += j_index_end - j_index_start;
367
368         /* Outer loop uses 9 flops */
369     }
370
371     /* Increment number of outer iterations */
372     outeriter        += nri;
373
374     /* Update outer/inner flops */
375
376     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
377 }
378 /*
379  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
380  * Electrostatics interaction: Ewald
381  * VdW interaction:            LJEwald
382  * Geometry:                   Particle-Particle
383  * Calculate force/pot:        Force
384  */
385 void
386 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
387                     (t_nblist                    * gmx_restrict       nlist,
388                      rvec                        * gmx_restrict          xx,
389                      rvec                        * gmx_restrict          ff,
390                      t_forcerec                  * gmx_restrict          fr,
391                      t_mdatoms                   * gmx_restrict     mdatoms,
392                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
393                      t_nrnb                      * gmx_restrict        nrnb)
394 {
395     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
396      * just 0 for non-waters.
397      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
398      * jnr indices corresponding to data put in the four positions in the SIMD register.
399      */
400     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
401     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
402     int              jnrA,jnrB;
403     int              j_coord_offsetA,j_coord_offsetB;
404     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
405     real             rcutoff_scalar;
406     real             *shiftvec,*fshift,*x,*f;
407     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
408     int              vdwioffset0;
409     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
410     int              vdwjidx0A,vdwjidx0B;
411     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
412     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
413     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
414     real             *charge;
415     int              nvdwtype;
416     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
417     int              *vdwtype;
418     real             *vdwparam;
419     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
420     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
421     _fjsp_v2r8           c6grid_00;
422     real                 *vdwgridparam;
423     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
424     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
425     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
426     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
427     real             *ewtab;
428     _fjsp_v2r8       itab_tmp;
429     _fjsp_v2r8       dummy_mask,cutoff_mask;
430     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
431     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
432     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
433
434     x                = xx[0];
435     f                = ff[0];
436
437     nri              = nlist->nri;
438     iinr             = nlist->iinr;
439     jindex           = nlist->jindex;
440     jjnr             = nlist->jjnr;
441     shiftidx         = nlist->shift;
442     gid              = nlist->gid;
443     shiftvec         = fr->shift_vec[0];
444     fshift           = fr->fshift[0];
445     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
446     charge           = mdatoms->chargeA;
447     nvdwtype         = fr->ntype;
448     vdwparam         = fr->nbfp;
449     vdwtype          = mdatoms->typeA;
450     vdwgridparam     = fr->ljpme_c6grid;
451     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
452     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
453     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
454
455     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
456     ewtab            = fr->ic->tabq_coul_F;
457     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
458     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
459
460     /* Avoid stupid compiler warnings */
461     jnrA = jnrB = 0;
462     j_coord_offsetA = 0;
463     j_coord_offsetB = 0;
464
465     outeriter        = 0;
466     inneriter        = 0;
467
468     /* Start outer loop over neighborlists */
469     for(iidx=0; iidx<nri; iidx++)
470     {
471         /* Load shift vector for this list */
472         i_shift_offset   = DIM*shiftidx[iidx];
473
474         /* Load limits for loop over neighbors */
475         j_index_start    = jindex[iidx];
476         j_index_end      = jindex[iidx+1];
477
478         /* Get outer coordinate index */
479         inr              = iinr[iidx];
480         i_coord_offset   = DIM*inr;
481
482         /* Load i particle coords and add shift vector */
483         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
484
485         fix0             = _fjsp_setzero_v2r8();
486         fiy0             = _fjsp_setzero_v2r8();
487         fiz0             = _fjsp_setzero_v2r8();
488
489         /* Load parameters for i particles */
490         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
491         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
492
493         /* Start inner kernel loop */
494         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
495         {
496
497             /* Get j neighbor index, and coordinate index */
498             jnrA             = jjnr[jidx];
499             jnrB             = jjnr[jidx+1];
500             j_coord_offsetA  = DIM*jnrA;
501             j_coord_offsetB  = DIM*jnrB;
502
503             /* load j atom coordinates */
504             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
505                                               &jx0,&jy0,&jz0);
506
507             /* Calculate displacement vector */
508             dx00             = _fjsp_sub_v2r8(ix0,jx0);
509             dy00             = _fjsp_sub_v2r8(iy0,jy0);
510             dz00             = _fjsp_sub_v2r8(iz0,jz0);
511
512             /* Calculate squared distance and things based on it */
513             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
514
515             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
516
517             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
518
519             /* Load parameters for j particles */
520             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq00             = _fjsp_mul_v2r8(iq0,jq0);
532             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
533                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
534
535             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
536                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
537
538             /* EWALD ELECTROSTATICS */
539
540             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
542             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
543             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
544             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
545
546             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
547                                          &ewtabF,&ewtabFn);
548             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
549             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
550
551             /* Analytical LJ-PME */
552             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
553             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
554             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
555             exponent         = gmx_simd_exp_d(-ewcljrsq);
556             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
557             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
558             /* f6A = 6 * C6grid * (1 - poly) */
559             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
560             /* f6B = C6grid * exponent * beta^6 */
561             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
562             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
563             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
564
565             fscal            = _fjsp_add_v2r8(felec,fvdw);
566
567             /* Update vectorial force */
568             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
569             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
570             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
571             
572             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
573
574             /* Inner loop uses 61 flops */
575         }
576
577         if(jidx<j_index_end)
578         {
579
580             jnrA             = jjnr[jidx];
581             j_coord_offsetA  = DIM*jnrA;
582
583             /* load j atom coordinates */
584             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
585                                               &jx0,&jy0,&jz0);
586
587             /* Calculate displacement vector */
588             dx00             = _fjsp_sub_v2r8(ix0,jx0);
589             dy00             = _fjsp_sub_v2r8(iy0,jy0);
590             dz00             = _fjsp_sub_v2r8(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
594
595             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
596
597             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
598
599             /* Load parameters for j particles */
600             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
601             vdwjidx0A        = 2*vdwtype[jnrA+0];
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq00             = _fjsp_mul_v2r8(iq0,jq0);
611             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
612
613             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
614
615             /* EWALD ELECTROSTATICS */
616
617             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
618             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
619             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
620             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
621             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
622
623             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
624             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
625             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
626
627             /* Analytical LJ-PME */
628             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
629             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
630             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
631             exponent         = gmx_simd_exp_d(-ewcljrsq);
632             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
633             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
634             /* f6A = 6 * C6grid * (1 - poly) */
635             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
636             /* f6B = C6grid * exponent * beta^6 */
637             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
638             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
639             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
640
641             fscal            = _fjsp_add_v2r8(felec,fvdw);
642
643             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
644
645             /* Update vectorial force */
646             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
647             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
648             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
649             
650             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
651
652             /* Inner loop uses 61 flops */
653         }
654
655         /* End of innermost loop */
656
657         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
658                                               f+i_coord_offset,fshift+i_shift_offset);
659
660         /* Increment number of inner iterations */
661         inneriter                  += j_index_end - j_index_start;
662
663         /* Outer loop uses 7 flops */
664     }
665
666     /* Increment number of outer iterations */
667     outeriter        += nri;
668
669     /* Update outer/inner flops */
670
671     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
672 }