K-computer specific modifications
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/legacyheaders/vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            CubicSplineTable
55  * Geometry:                   Water4-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwioffset3;
88     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx0A,vdwjidx0B;
90     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
95     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
102     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
103     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
104     real             *vftab;
105     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     _fjsp_v2r8       itab_tmp;
108     _fjsp_v2r8       dummy_mask,cutoff_mask;
109     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
110     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
111     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
112
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
132
133     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
136     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
141     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
142     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _fjsp_setzero_v2r8();
172         fiy0             = _fjsp_setzero_v2r8();
173         fiz0             = _fjsp_setzero_v2r8();
174         fix1             = _fjsp_setzero_v2r8();
175         fiy1             = _fjsp_setzero_v2r8();
176         fiz1             = _fjsp_setzero_v2r8();
177         fix2             = _fjsp_setzero_v2r8();
178         fiy2             = _fjsp_setzero_v2r8();
179         fiz2             = _fjsp_setzero_v2r8();
180         fix3             = _fjsp_setzero_v2r8();
181         fiy3             = _fjsp_setzero_v2r8();
182         fiz3             = _fjsp_setzero_v2r8();
183
184         /* Reset potential sums */
185         velecsum         = _fjsp_setzero_v2r8();
186         vvdwsum          = _fjsp_setzero_v2r8();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _fjsp_sub_v2r8(ix0,jx0);
204             dy00             = _fjsp_sub_v2r8(iy0,jy0);
205             dz00             = _fjsp_sub_v2r8(iz0,jz0);
206             dx10             = _fjsp_sub_v2r8(ix1,jx0);
207             dy10             = _fjsp_sub_v2r8(iy1,jy0);
208             dz10             = _fjsp_sub_v2r8(iz1,jz0);
209             dx20             = _fjsp_sub_v2r8(ix2,jx0);
210             dy20             = _fjsp_sub_v2r8(iy2,jy0);
211             dz20             = _fjsp_sub_v2r8(iz2,jz0);
212             dx30             = _fjsp_sub_v2r8(ix3,jx0);
213             dy30             = _fjsp_sub_v2r8(iy3,jy0);
214             dz30             = _fjsp_sub_v2r8(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
218             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
219             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
220             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
221
222             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
223             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
224             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
225             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
226
227             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
228             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
229             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _fjsp_setzero_v2r8();
237             fjy0             = _fjsp_setzero_v2r8();
238             fjz0             = _fjsp_setzero_v2r8();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
249
250             /* Calculate table index by multiplying r with table scale and truncate to integer */
251             rt               = _fjsp_mul_v2r8(r00,vftabscale);
252             itab_tmp         = _fjsp_dtox_v2r8(rt);
253             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
254             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
255             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
256
257             vfconv.i[0]     *= 8;
258             vfconv.i[1]     *= 8;
259
260             /* CUBIC SPLINE TABLE DISPERSION */
261             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
262             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
263             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
264             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
265             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
266             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
267             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
268             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
269             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
270             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
271             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
272
273             /* CUBIC SPLINE TABLE REPULSION */
274             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
275             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
276             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
277             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
278             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
279             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
280             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
281             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
282             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
283             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
284             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
285             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
286             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
290
291             fscal            = fvdw;
292
293             /* Update vectorial force */
294             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
295             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
296             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
297             
298             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
299             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
300             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq10             = _fjsp_mul_v2r8(iq1,jq0);
310
311             /* EWALD ELECTROSTATICS */
312
313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
314             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
315             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
316             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
317             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
318
319             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
320             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
321             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
322             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
323             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
324             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
325             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
326             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
327             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
328             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _fjsp_add_v2r8(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Update vectorial force */
336             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
337             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
338             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
339             
340             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
341             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
342             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _fjsp_mul_v2r8(iq2,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
357             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
358             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
359             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
360
361             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
362             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
363             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
364             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
365             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
366             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
367             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
368             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
369             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
370             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _fjsp_add_v2r8(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Update vectorial force */
378             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
379             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
380             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
381             
382             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
383             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
384             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq30             = _fjsp_mul_v2r8(iq3,jq0);
394
395             /* EWALD ELECTROSTATICS */
396
397             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
398             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
399             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
400             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
401             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
402
403             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
404             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
405             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
406             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
407             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
408             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
409             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
410             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
411             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
412             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velecsum         = _fjsp_add_v2r8(velecsum,velec);
416
417             fscal            = felec;
418
419             /* Update vectorial force */
420             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
421             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
422             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
423             
424             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
425             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
426             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
427
428             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
429
430             /* Inner loop uses 194 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             jnrA             = jjnr[jidx];
437             j_coord_offsetA  = DIM*jnrA;
438
439             /* load j atom coordinates */
440             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx00             = _fjsp_sub_v2r8(ix0,jx0);
445             dy00             = _fjsp_sub_v2r8(iy0,jy0);
446             dz00             = _fjsp_sub_v2r8(iz0,jz0);
447             dx10             = _fjsp_sub_v2r8(ix1,jx0);
448             dy10             = _fjsp_sub_v2r8(iy1,jy0);
449             dz10             = _fjsp_sub_v2r8(iz1,jz0);
450             dx20             = _fjsp_sub_v2r8(ix2,jx0);
451             dy20             = _fjsp_sub_v2r8(iy2,jy0);
452             dz20             = _fjsp_sub_v2r8(iz2,jz0);
453             dx30             = _fjsp_sub_v2r8(ix3,jx0);
454             dy30             = _fjsp_sub_v2r8(iy3,jy0);
455             dz30             = _fjsp_sub_v2r8(iz3,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
459             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
460             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
461             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
462
463             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
464             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
465             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
466             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
467
468             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
469             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
470             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
471
472             /* Load parameters for j particles */
473             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475
476             fjx0             = _fjsp_setzero_v2r8();
477             fjy0             = _fjsp_setzero_v2r8();
478             fjz0             = _fjsp_setzero_v2r8();
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
488                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
489
490             /* Calculate table index by multiplying r with table scale and truncate to integer */
491             rt               = _fjsp_mul_v2r8(r00,vftabscale);
492             itab_tmp         = _fjsp_dtox_v2r8(rt);
493             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
494             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
495             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
496
497             vfconv.i[0]     *= 8;
498             vfconv.i[1]     *= 8;
499
500             /* CUBIC SPLINE TABLE DISPERSION */
501             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
502             F                = _fjsp_setzero_v2r8();
503             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
504             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
505             H                = _fjsp_setzero_v2r8();
506             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
507             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
508             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
509             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
510             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
511             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
512
513             /* CUBIC SPLINE TABLE REPULSION */
514             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
515             F                = _fjsp_setzero_v2r8();
516             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
517             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
518             H                = _fjsp_setzero_v2r8();
519             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
520             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
521             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
522             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
523             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
524             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
525             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
526             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
527
528             /* Update potential sum for this i atom from the interaction with this j atom. */
529             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
530             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
531
532             fscal            = fvdw;
533
534             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
535
536             /* Update vectorial force */
537             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
538             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
539             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
540             
541             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
542             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
543             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq10             = _fjsp_mul_v2r8(iq1,jq0);
553
554             /* EWALD ELECTROSTATICS */
555
556             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
557             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
558             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
559             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
560             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
561
562             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
563             ewtabD           = _fjsp_setzero_v2r8();
564             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
565             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
566             ewtabFn          = _fjsp_setzero_v2r8();
567             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
568             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
569             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
570             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
571             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
575             velecsum         = _fjsp_add_v2r8(velecsum,velec);
576
577             fscal            = felec;
578
579             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
580
581             /* Update vectorial force */
582             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
583             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
584             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
585             
586             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
587             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
588             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
589
590             /**************************
591              * CALCULATE INTERACTIONS *
592              **************************/
593
594             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq20             = _fjsp_mul_v2r8(iq2,jq0);
598
599             /* EWALD ELECTROSTATICS */
600
601             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
602             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
603             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
604             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
605             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
606
607             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
608             ewtabD           = _fjsp_setzero_v2r8();
609             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
610             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
611             ewtabFn          = _fjsp_setzero_v2r8();
612             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
613             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
614             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
615             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
616             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
620             velecsum         = _fjsp_add_v2r8(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
625
626             /* Update vectorial force */
627             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
628             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
629             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
630             
631             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
632             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
633             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
634
635             /**************************
636              * CALCULATE INTERACTIONS *
637              **************************/
638
639             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq30             = _fjsp_mul_v2r8(iq3,jq0);
643
644             /* EWALD ELECTROSTATICS */
645
646             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
647             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
648             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
649             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
650             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
651
652             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
653             ewtabD           = _fjsp_setzero_v2r8();
654             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
655             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
656             ewtabFn          = _fjsp_setzero_v2r8();
657             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
658             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
659             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
660             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
661             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
662
663             /* Update potential sum for this i atom from the interaction with this j atom. */
664             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
665             velecsum         = _fjsp_add_v2r8(velecsum,velec);
666
667             fscal            = felec;
668
669             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
670
671             /* Update vectorial force */
672             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
673             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
674             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
675             
676             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
677             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
678             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
679
680             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
681
682             /* Inner loop uses 194 flops */
683         }
684
685         /* End of innermost loop */
686
687         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
688                                               f+i_coord_offset,fshift+i_shift_offset);
689
690         ggid                        = gid[iidx];
691         /* Update potential energies */
692         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
693         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
694
695         /* Increment number of inner iterations */
696         inneriter                  += j_index_end - j_index_start;
697
698         /* Outer loop uses 26 flops */
699     }
700
701     /* Increment number of outer iterations */
702     outeriter        += nri;
703
704     /* Update outer/inner flops */
705
706     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
707 }
708 /*
709  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sparc64_hpc_ace_double
710  * Electrostatics interaction: Ewald
711  * VdW interaction:            CubicSplineTable
712  * Geometry:                   Water4-Particle
713  * Calculate force/pot:        Force
714  */
715 void
716 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sparc64_hpc_ace_double
717                     (t_nblist                    * gmx_restrict       nlist,
718                      rvec                        * gmx_restrict          xx,
719                      rvec                        * gmx_restrict          ff,
720                      t_forcerec                  * gmx_restrict          fr,
721                      t_mdatoms                   * gmx_restrict     mdatoms,
722                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
723                      t_nrnb                      * gmx_restrict        nrnb)
724 {
725     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
726      * just 0 for non-waters.
727      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
728      * jnr indices corresponding to data put in the four positions in the SIMD register.
729      */
730     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
731     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
732     int              jnrA,jnrB;
733     int              j_coord_offsetA,j_coord_offsetB;
734     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
735     real             rcutoff_scalar;
736     real             *shiftvec,*fshift,*x,*f;
737     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
738     int              vdwioffset0;
739     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
740     int              vdwioffset1;
741     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
742     int              vdwioffset2;
743     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
744     int              vdwioffset3;
745     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
746     int              vdwjidx0A,vdwjidx0B;
747     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
748     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
749     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
750     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
751     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
752     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
753     real             *charge;
754     int              nvdwtype;
755     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
756     int              *vdwtype;
757     real             *vdwparam;
758     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
759     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
760     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
761     real             *vftab;
762     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
763     real             *ewtab;
764     _fjsp_v2r8       itab_tmp;
765     _fjsp_v2r8       dummy_mask,cutoff_mask;
766     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
767     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
768     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
769
770     x                = xx[0];
771     f                = ff[0];
772
773     nri              = nlist->nri;
774     iinr             = nlist->iinr;
775     jindex           = nlist->jindex;
776     jjnr             = nlist->jjnr;
777     shiftidx         = nlist->shift;
778     gid              = nlist->gid;
779     shiftvec         = fr->shift_vec[0];
780     fshift           = fr->fshift[0];
781     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
782     charge           = mdatoms->chargeA;
783     nvdwtype         = fr->ntype;
784     vdwparam         = fr->nbfp;
785     vdwtype          = mdatoms->typeA;
786
787     vftab            = kernel_data->table_vdw->data;
788     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
789
790     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
791     ewtab            = fr->ic->tabq_coul_F;
792     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
793     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
794
795     /* Setup water-specific parameters */
796     inr              = nlist->iinr[0];
797     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
798     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
799     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
800     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
801
802     /* Avoid stupid compiler warnings */
803     jnrA = jnrB = 0;
804     j_coord_offsetA = 0;
805     j_coord_offsetB = 0;
806
807     outeriter        = 0;
808     inneriter        = 0;
809
810     /* Start outer loop over neighborlists */
811     for(iidx=0; iidx<nri; iidx++)
812     {
813         /* Load shift vector for this list */
814         i_shift_offset   = DIM*shiftidx[iidx];
815
816         /* Load limits for loop over neighbors */
817         j_index_start    = jindex[iidx];
818         j_index_end      = jindex[iidx+1];
819
820         /* Get outer coordinate index */
821         inr              = iinr[iidx];
822         i_coord_offset   = DIM*inr;
823
824         /* Load i particle coords and add shift vector */
825         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
826                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
827
828         fix0             = _fjsp_setzero_v2r8();
829         fiy0             = _fjsp_setzero_v2r8();
830         fiz0             = _fjsp_setzero_v2r8();
831         fix1             = _fjsp_setzero_v2r8();
832         fiy1             = _fjsp_setzero_v2r8();
833         fiz1             = _fjsp_setzero_v2r8();
834         fix2             = _fjsp_setzero_v2r8();
835         fiy2             = _fjsp_setzero_v2r8();
836         fiz2             = _fjsp_setzero_v2r8();
837         fix3             = _fjsp_setzero_v2r8();
838         fiy3             = _fjsp_setzero_v2r8();
839         fiz3             = _fjsp_setzero_v2r8();
840
841         /* Start inner kernel loop */
842         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
843         {
844
845             /* Get j neighbor index, and coordinate index */
846             jnrA             = jjnr[jidx];
847             jnrB             = jjnr[jidx+1];
848             j_coord_offsetA  = DIM*jnrA;
849             j_coord_offsetB  = DIM*jnrB;
850
851             /* load j atom coordinates */
852             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
853                                               &jx0,&jy0,&jz0);
854
855             /* Calculate displacement vector */
856             dx00             = _fjsp_sub_v2r8(ix0,jx0);
857             dy00             = _fjsp_sub_v2r8(iy0,jy0);
858             dz00             = _fjsp_sub_v2r8(iz0,jz0);
859             dx10             = _fjsp_sub_v2r8(ix1,jx0);
860             dy10             = _fjsp_sub_v2r8(iy1,jy0);
861             dz10             = _fjsp_sub_v2r8(iz1,jz0);
862             dx20             = _fjsp_sub_v2r8(ix2,jx0);
863             dy20             = _fjsp_sub_v2r8(iy2,jy0);
864             dz20             = _fjsp_sub_v2r8(iz2,jz0);
865             dx30             = _fjsp_sub_v2r8(ix3,jx0);
866             dy30             = _fjsp_sub_v2r8(iy3,jy0);
867             dz30             = _fjsp_sub_v2r8(iz3,jz0);
868
869             /* Calculate squared distance and things based on it */
870             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
871             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
872             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
873             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
874
875             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
876             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
877             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
878             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
879
880             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
881             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
882             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
883
884             /* Load parameters for j particles */
885             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
886             vdwjidx0A        = 2*vdwtype[jnrA+0];
887             vdwjidx0B        = 2*vdwtype[jnrB+0];
888
889             fjx0             = _fjsp_setzero_v2r8();
890             fjy0             = _fjsp_setzero_v2r8();
891             fjz0             = _fjsp_setzero_v2r8();
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
898
899             /* Compute parameters for interactions between i and j atoms */
900             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
901                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
902
903             /* Calculate table index by multiplying r with table scale and truncate to integer */
904             rt               = _fjsp_mul_v2r8(r00,vftabscale);
905             itab_tmp         = _fjsp_dtox_v2r8(rt);
906             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
907             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
908             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
909
910             vfconv.i[0]     *= 8;
911             vfconv.i[1]     *= 8;
912
913             /* CUBIC SPLINE TABLE DISPERSION */
914             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
915             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
916             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
917             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
918             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
919             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
920             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
921             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
922             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
923
924             /* CUBIC SPLINE TABLE REPULSION */
925             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
926             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
927             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
928             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
929             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
930             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
931             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
932             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
933             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
934             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
935
936             fscal            = fvdw;
937
938             /* Update vectorial force */
939             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
940             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
941             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
942             
943             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
944             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
945             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq10             = _fjsp_mul_v2r8(iq1,jq0);
955
956             /* EWALD ELECTROSTATICS */
957
958             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
959             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
960             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
961             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
962             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
963
964             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
965                                          &ewtabF,&ewtabFn);
966             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
967             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
968
969             fscal            = felec;
970
971             /* Update vectorial force */
972             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
973             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
974             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
975             
976             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
977             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
978             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
979
980             /**************************
981              * CALCULATE INTERACTIONS *
982              **************************/
983
984             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
985
986             /* Compute parameters for interactions between i and j atoms */
987             qq20             = _fjsp_mul_v2r8(iq2,jq0);
988
989             /* EWALD ELECTROSTATICS */
990
991             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
992             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
993             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
994             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
995             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
996
997             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
998                                          &ewtabF,&ewtabFn);
999             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1000             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1001
1002             fscal            = felec;
1003
1004             /* Update vectorial force */
1005             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1006             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1007             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1008             
1009             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1010             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1011             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1021
1022             /* EWALD ELECTROSTATICS */
1023
1024             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1025             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1026             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1027             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1028             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1029
1030             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1031                                          &ewtabF,&ewtabFn);
1032             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1033             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1034
1035             fscal            = felec;
1036
1037             /* Update vectorial force */
1038             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1039             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1040             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1041             
1042             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1043             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1044             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1045
1046             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1047
1048             /* Inner loop uses 171 flops */
1049         }
1050
1051         if(jidx<j_index_end)
1052         {
1053
1054             jnrA             = jjnr[jidx];
1055             j_coord_offsetA  = DIM*jnrA;
1056
1057             /* load j atom coordinates */
1058             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1059                                               &jx0,&jy0,&jz0);
1060
1061             /* Calculate displacement vector */
1062             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1063             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1064             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1065             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1066             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1067             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1068             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1069             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1070             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1071             dx30             = _fjsp_sub_v2r8(ix3,jx0);
1072             dy30             = _fjsp_sub_v2r8(iy3,jy0);
1073             dz30             = _fjsp_sub_v2r8(iz3,jz0);
1074
1075             /* Calculate squared distance and things based on it */
1076             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1077             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1078             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1079             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
1080
1081             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1082             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1083             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1084             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
1085
1086             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1087             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1088             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
1089
1090             /* Load parameters for j particles */
1091             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1092             vdwjidx0A        = 2*vdwtype[jnrA+0];
1093
1094             fjx0             = _fjsp_setzero_v2r8();
1095             fjy0             = _fjsp_setzero_v2r8();
1096             fjz0             = _fjsp_setzero_v2r8();
1097
1098             /**************************
1099              * CALCULATE INTERACTIONS *
1100              **************************/
1101
1102             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1106                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1107
1108             /* Calculate table index by multiplying r with table scale and truncate to integer */
1109             rt               = _fjsp_mul_v2r8(r00,vftabscale);
1110             itab_tmp         = _fjsp_dtox_v2r8(rt);
1111             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
1112             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
1113             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
1114
1115             vfconv.i[0]     *= 8;
1116             vfconv.i[1]     *= 8;
1117
1118             /* CUBIC SPLINE TABLE DISPERSION */
1119             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
1120             F                = _fjsp_setzero_v2r8();
1121             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1122             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
1123             H                = _fjsp_setzero_v2r8();
1124             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1125             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1126             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1127             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
1128
1129             /* CUBIC SPLINE TABLE REPULSION */
1130             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
1131             F                = _fjsp_setzero_v2r8();
1132             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1133             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
1134             H                = _fjsp_setzero_v2r8();
1135             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1136             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1137             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1138             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
1139             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
1140
1141             fscal            = fvdw;
1142
1143             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1144
1145             /* Update vectorial force */
1146             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1147             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1148             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1149             
1150             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1151             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1152             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1162
1163             /* EWALD ELECTROSTATICS */
1164
1165             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1166             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1167             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1168             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1169             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1170
1171             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1172             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1173             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1174
1175             fscal            = felec;
1176
1177             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1178
1179             /* Update vectorial force */
1180             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1181             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1182             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1183             
1184             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1185             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1186             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1187
1188             /**************************
1189              * CALCULATE INTERACTIONS *
1190              **************************/
1191
1192             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1193
1194             /* Compute parameters for interactions between i and j atoms */
1195             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1196
1197             /* EWALD ELECTROSTATICS */
1198
1199             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1200             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1201             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1202             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1203             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1204
1205             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1206             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1207             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1208
1209             fscal            = felec;
1210
1211             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1212
1213             /* Update vectorial force */
1214             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1215             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1216             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1217             
1218             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1219             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1220             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1221
1222             /**************************
1223              * CALCULATE INTERACTIONS *
1224              **************************/
1225
1226             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1227
1228             /* Compute parameters for interactions between i and j atoms */
1229             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1230
1231             /* EWALD ELECTROSTATICS */
1232
1233             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1234             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1235             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1236             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1237             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1238
1239             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1240             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1241             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1242
1243             fscal            = felec;
1244
1245             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1246
1247             /* Update vectorial force */
1248             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1249             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1250             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1251             
1252             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1253             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1254             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1255
1256             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1257
1258             /* Inner loop uses 171 flops */
1259         }
1260
1261         /* End of innermost loop */
1262
1263         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1264                                               f+i_coord_offset,fshift+i_shift_offset);
1265
1266         /* Increment number of inner iterations */
1267         inneriter                  += j_index_end - j_index_start;
1268
1269         /* Outer loop uses 24 flops */
1270     }
1271
1272     /* Increment number of outer iterations */
1273     outeriter        += nri;
1274
1275     /* Update outer/inner flops */
1276
1277     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*171);
1278 }