Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
100     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
101     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     _fjsp_v2r8       itab_tmp;
106     _fjsp_v2r8       dummy_mask,cutoff_mask;
107     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
108     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
109     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
110
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     vftab            = kernel_data->table_vdw->data;
129     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
130
131     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
134     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
139     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
140     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
141     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
168
169         fix0             = _fjsp_setzero_v2r8();
170         fiy0             = _fjsp_setzero_v2r8();
171         fiz0             = _fjsp_setzero_v2r8();
172         fix1             = _fjsp_setzero_v2r8();
173         fiy1             = _fjsp_setzero_v2r8();
174         fiz1             = _fjsp_setzero_v2r8();
175         fix2             = _fjsp_setzero_v2r8();
176         fiy2             = _fjsp_setzero_v2r8();
177         fiz2             = _fjsp_setzero_v2r8();
178         fix3             = _fjsp_setzero_v2r8();
179         fiy3             = _fjsp_setzero_v2r8();
180         fiz3             = _fjsp_setzero_v2r8();
181
182         /* Reset potential sums */
183         velecsum         = _fjsp_setzero_v2r8();
184         vvdwsum          = _fjsp_setzero_v2r8();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195
196             /* load j atom coordinates */
197             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _fjsp_sub_v2r8(ix0,jx0);
202             dy00             = _fjsp_sub_v2r8(iy0,jy0);
203             dz00             = _fjsp_sub_v2r8(iz0,jz0);
204             dx10             = _fjsp_sub_v2r8(ix1,jx0);
205             dy10             = _fjsp_sub_v2r8(iy1,jy0);
206             dz10             = _fjsp_sub_v2r8(iz1,jz0);
207             dx20             = _fjsp_sub_v2r8(ix2,jx0);
208             dy20             = _fjsp_sub_v2r8(iy2,jy0);
209             dz20             = _fjsp_sub_v2r8(iz2,jz0);
210             dx30             = _fjsp_sub_v2r8(ix3,jx0);
211             dy30             = _fjsp_sub_v2r8(iy3,jy0);
212             dz30             = _fjsp_sub_v2r8(iz3,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
216             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
217             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
218             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
219
220             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
221             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
222             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
223             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
224
225             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
226             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
227             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233
234             fjx0             = _fjsp_setzero_v2r8();
235             fjy0             = _fjsp_setzero_v2r8();
236             fjz0             = _fjsp_setzero_v2r8();
237
238             /**************************
239              * CALCULATE INTERACTIONS *
240              **************************/
241
242             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
243
244             /* Compute parameters for interactions between i and j atoms */
245             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
246                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
247
248             /* Calculate table index by multiplying r with table scale and truncate to integer */
249             rt               = _fjsp_mul_v2r8(r00,vftabscale);
250             itab_tmp         = _fjsp_dtox_v2r8(rt);
251             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
252             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
253             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
254
255             vfconv.i[0]     *= 8;
256             vfconv.i[1]     *= 8;
257
258             /* CUBIC SPLINE TABLE DISPERSION */
259             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
260             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
261             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
262             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
263             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
264             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
265             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
266             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
267             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
268             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
269             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
270
271             /* CUBIC SPLINE TABLE REPULSION */
272             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
273             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
274             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
275             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
276             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
277             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
278             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
279             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
280             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
281             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
282             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
283             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
284             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
288
289             fscal            = fvdw;
290
291             /* Update vectorial force */
292             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
293             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
294             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
295             
296             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
297             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
298             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _fjsp_mul_v2r8(iq1,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
313             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
314             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
315             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
316
317             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
318             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
319             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
320             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
321             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
322             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
323             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
324             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
325             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
326             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _fjsp_add_v2r8(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Update vectorial force */
334             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
335             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
336             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
337             
338             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
339             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
340             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq20             = _fjsp_mul_v2r8(iq2,jq0);
350
351             /* EWALD ELECTROSTATICS */
352
353             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
354             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
355             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
356             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
357             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
358
359             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
360             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
361             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
362             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
363             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
364             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
365             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
366             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
367             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
368             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velecsum         = _fjsp_add_v2r8(velecsum,velec);
372
373             fscal            = felec;
374
375             /* Update vectorial force */
376             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
377             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
378             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
379             
380             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
381             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
382             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq30             = _fjsp_mul_v2r8(iq3,jq0);
392
393             /* EWALD ELECTROSTATICS */
394
395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
396             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
397             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
398             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
399             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
400
401             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
402             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
403             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
404             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
405             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
406             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
407             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
408             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
409             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
410             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velecsum         = _fjsp_add_v2r8(velecsum,velec);
414
415             fscal            = felec;
416
417             /* Update vectorial force */
418             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
419             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
420             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
421             
422             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
423             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
424             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
425
426             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
427
428             /* Inner loop uses 194 flops */
429         }
430
431         if(jidx<j_index_end)
432         {
433
434             jnrA             = jjnr[jidx];
435             j_coord_offsetA  = DIM*jnrA;
436
437             /* load j atom coordinates */
438             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
439                                               &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _fjsp_sub_v2r8(ix0,jx0);
443             dy00             = _fjsp_sub_v2r8(iy0,jy0);
444             dz00             = _fjsp_sub_v2r8(iz0,jz0);
445             dx10             = _fjsp_sub_v2r8(ix1,jx0);
446             dy10             = _fjsp_sub_v2r8(iy1,jy0);
447             dz10             = _fjsp_sub_v2r8(iz1,jz0);
448             dx20             = _fjsp_sub_v2r8(ix2,jx0);
449             dy20             = _fjsp_sub_v2r8(iy2,jy0);
450             dz20             = _fjsp_sub_v2r8(iz2,jz0);
451             dx30             = _fjsp_sub_v2r8(ix3,jx0);
452             dy30             = _fjsp_sub_v2r8(iy3,jy0);
453             dz30             = _fjsp_sub_v2r8(iz3,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
457             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
458             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
459             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
460
461             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
462             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
463             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
464             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
465
466             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
467             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
468             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
469
470             /* Load parameters for j particles */
471             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
472             vdwjidx0A        = 2*vdwtype[jnrA+0];
473
474             fjx0             = _fjsp_setzero_v2r8();
475             fjy0             = _fjsp_setzero_v2r8();
476             fjz0             = _fjsp_setzero_v2r8();
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
483
484             /* Compute parameters for interactions between i and j atoms */
485             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
486
487             /* Calculate table index by multiplying r with table scale and truncate to integer */
488             rt               = _fjsp_mul_v2r8(r00,vftabscale);
489             itab_tmp         = _fjsp_dtox_v2r8(rt);
490             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
491             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
492             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
493
494             vfconv.i[0]     *= 8;
495             vfconv.i[1]     *= 8;
496
497             /* CUBIC SPLINE TABLE DISPERSION */
498             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
499             F                = _fjsp_setzero_v2r8();
500             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
501             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
502             H                = _fjsp_setzero_v2r8();
503             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
504             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
505             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
506             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
507             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
508             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
509
510             /* CUBIC SPLINE TABLE REPULSION */
511             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
512             F                = _fjsp_setzero_v2r8();
513             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
514             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
515             H                = _fjsp_setzero_v2r8();
516             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
517             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
518             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
519             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
520             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
521             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
522             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
523             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
527             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
528
529             fscal            = fvdw;
530
531             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
532
533             /* Update vectorial force */
534             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
535             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
536             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
537             
538             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
539             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
540             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq10             = _fjsp_mul_v2r8(iq1,jq0);
550
551             /* EWALD ELECTROSTATICS */
552
553             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
554             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
555             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
556             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
557             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
558
559             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
560             ewtabD           = _fjsp_setzero_v2r8();
561             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
562             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
563             ewtabFn          = _fjsp_setzero_v2r8();
564             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
565             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
566             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
567             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
568             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
572             velecsum         = _fjsp_add_v2r8(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
577
578             /* Update vectorial force */
579             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
580             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
581             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
582             
583             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
584             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
585             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
586
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
592
593             /* Compute parameters for interactions between i and j atoms */
594             qq20             = _fjsp_mul_v2r8(iq2,jq0);
595
596             /* EWALD ELECTROSTATICS */
597
598             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
599             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
600             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
601             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
602             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
603
604             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
605             ewtabD           = _fjsp_setzero_v2r8();
606             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
607             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
608             ewtabFn          = _fjsp_setzero_v2r8();
609             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
610             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
611             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
612             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
613             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
617             velecsum         = _fjsp_add_v2r8(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
622
623             /* Update vectorial force */
624             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
625             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
626             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
627             
628             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
629             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
630             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
631
632             /**************************
633              * CALCULATE INTERACTIONS *
634              **************************/
635
636             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
637
638             /* Compute parameters for interactions between i and j atoms */
639             qq30             = _fjsp_mul_v2r8(iq3,jq0);
640
641             /* EWALD ELECTROSTATICS */
642
643             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
644             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
645             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
646             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
647             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
648
649             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
650             ewtabD           = _fjsp_setzero_v2r8();
651             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
652             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
653             ewtabFn          = _fjsp_setzero_v2r8();
654             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
655             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
656             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
657             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
658             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
659
660             /* Update potential sum for this i atom from the interaction with this j atom. */
661             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
662             velecsum         = _fjsp_add_v2r8(velecsum,velec);
663
664             fscal            = felec;
665
666             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
667
668             /* Update vectorial force */
669             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
670             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
671             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
672             
673             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
674             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
675             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
676
677             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
678
679             /* Inner loop uses 194 flops */
680         }
681
682         /* End of innermost loop */
683
684         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
685                                               f+i_coord_offset,fshift+i_shift_offset);
686
687         ggid                        = gid[iidx];
688         /* Update potential energies */
689         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
690         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
691
692         /* Increment number of inner iterations */
693         inneriter                  += j_index_end - j_index_start;
694
695         /* Outer loop uses 26 flops */
696     }
697
698     /* Increment number of outer iterations */
699     outeriter        += nri;
700
701     /* Update outer/inner flops */
702
703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
704 }
705 /*
706  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sparc64_hpc_ace_double
707  * Electrostatics interaction: Ewald
708  * VdW interaction:            CubicSplineTable
709  * Geometry:                   Water4-Particle
710  * Calculate force/pot:        Force
711  */
712 void
713 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sparc64_hpc_ace_double
714                     (t_nblist                    * gmx_restrict       nlist,
715                      rvec                        * gmx_restrict          xx,
716                      rvec                        * gmx_restrict          ff,
717                      t_forcerec                  * gmx_restrict          fr,
718                      t_mdatoms                   * gmx_restrict     mdatoms,
719                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
720                      t_nrnb                      * gmx_restrict        nrnb)
721 {
722     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
723      * just 0 for non-waters.
724      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
725      * jnr indices corresponding to data put in the four positions in the SIMD register.
726      */
727     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
728     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
729     int              jnrA,jnrB;
730     int              j_coord_offsetA,j_coord_offsetB;
731     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
732     real             rcutoff_scalar;
733     real             *shiftvec,*fshift,*x,*f;
734     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
735     int              vdwioffset0;
736     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
737     int              vdwioffset1;
738     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
739     int              vdwioffset2;
740     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
741     int              vdwioffset3;
742     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
743     int              vdwjidx0A,vdwjidx0B;
744     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
745     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
746     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
747     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
748     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
749     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
750     real             *charge;
751     int              nvdwtype;
752     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
753     int              *vdwtype;
754     real             *vdwparam;
755     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
756     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
757     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
758     real             *vftab;
759     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
760     real             *ewtab;
761     _fjsp_v2r8       itab_tmp;
762     _fjsp_v2r8       dummy_mask,cutoff_mask;
763     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
764     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
765     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
766
767     x                = xx[0];
768     f                = ff[0];
769
770     nri              = nlist->nri;
771     iinr             = nlist->iinr;
772     jindex           = nlist->jindex;
773     jjnr             = nlist->jjnr;
774     shiftidx         = nlist->shift;
775     gid              = nlist->gid;
776     shiftvec         = fr->shift_vec[0];
777     fshift           = fr->fshift[0];
778     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
779     charge           = mdatoms->chargeA;
780     nvdwtype         = fr->ntype;
781     vdwparam         = fr->nbfp;
782     vdwtype          = mdatoms->typeA;
783
784     vftab            = kernel_data->table_vdw->data;
785     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
786
787     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
788     ewtab            = fr->ic->tabq_coul_F;
789     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
790     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
791
792     /* Setup water-specific parameters */
793     inr              = nlist->iinr[0];
794     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
795     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
796     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
797     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
798
799     /* Avoid stupid compiler warnings */
800     jnrA = jnrB = 0;
801     j_coord_offsetA = 0;
802     j_coord_offsetB = 0;
803
804     outeriter        = 0;
805     inneriter        = 0;
806
807     /* Start outer loop over neighborlists */
808     for(iidx=0; iidx<nri; iidx++)
809     {
810         /* Load shift vector for this list */
811         i_shift_offset   = DIM*shiftidx[iidx];
812
813         /* Load limits for loop over neighbors */
814         j_index_start    = jindex[iidx];
815         j_index_end      = jindex[iidx+1];
816
817         /* Get outer coordinate index */
818         inr              = iinr[iidx];
819         i_coord_offset   = DIM*inr;
820
821         /* Load i particle coords and add shift vector */
822         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
823                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
824
825         fix0             = _fjsp_setzero_v2r8();
826         fiy0             = _fjsp_setzero_v2r8();
827         fiz0             = _fjsp_setzero_v2r8();
828         fix1             = _fjsp_setzero_v2r8();
829         fiy1             = _fjsp_setzero_v2r8();
830         fiz1             = _fjsp_setzero_v2r8();
831         fix2             = _fjsp_setzero_v2r8();
832         fiy2             = _fjsp_setzero_v2r8();
833         fiz2             = _fjsp_setzero_v2r8();
834         fix3             = _fjsp_setzero_v2r8();
835         fiy3             = _fjsp_setzero_v2r8();
836         fiz3             = _fjsp_setzero_v2r8();
837
838         /* Start inner kernel loop */
839         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
840         {
841
842             /* Get j neighbor index, and coordinate index */
843             jnrA             = jjnr[jidx];
844             jnrB             = jjnr[jidx+1];
845             j_coord_offsetA  = DIM*jnrA;
846             j_coord_offsetB  = DIM*jnrB;
847
848             /* load j atom coordinates */
849             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
850                                               &jx0,&jy0,&jz0);
851
852             /* Calculate displacement vector */
853             dx00             = _fjsp_sub_v2r8(ix0,jx0);
854             dy00             = _fjsp_sub_v2r8(iy0,jy0);
855             dz00             = _fjsp_sub_v2r8(iz0,jz0);
856             dx10             = _fjsp_sub_v2r8(ix1,jx0);
857             dy10             = _fjsp_sub_v2r8(iy1,jy0);
858             dz10             = _fjsp_sub_v2r8(iz1,jz0);
859             dx20             = _fjsp_sub_v2r8(ix2,jx0);
860             dy20             = _fjsp_sub_v2r8(iy2,jy0);
861             dz20             = _fjsp_sub_v2r8(iz2,jz0);
862             dx30             = _fjsp_sub_v2r8(ix3,jx0);
863             dy30             = _fjsp_sub_v2r8(iy3,jy0);
864             dz30             = _fjsp_sub_v2r8(iz3,jz0);
865
866             /* Calculate squared distance and things based on it */
867             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
868             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
869             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
870             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
871
872             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
873             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
874             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
875             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
876
877             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
878             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
879             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
880
881             /* Load parameters for j particles */
882             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
883             vdwjidx0A        = 2*vdwtype[jnrA+0];
884             vdwjidx0B        = 2*vdwtype[jnrB+0];
885
886             fjx0             = _fjsp_setzero_v2r8();
887             fjy0             = _fjsp_setzero_v2r8();
888             fjz0             = _fjsp_setzero_v2r8();
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
895
896             /* Compute parameters for interactions between i and j atoms */
897             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
898                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
899
900             /* Calculate table index by multiplying r with table scale and truncate to integer */
901             rt               = _fjsp_mul_v2r8(r00,vftabscale);
902             itab_tmp         = _fjsp_dtox_v2r8(rt);
903             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
904             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
905             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
906
907             vfconv.i[0]     *= 8;
908             vfconv.i[1]     *= 8;
909
910             /* CUBIC SPLINE TABLE DISPERSION */
911             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
912             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
913             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
914             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
915             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
916             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
917             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
918             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
919             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
920
921             /* CUBIC SPLINE TABLE REPULSION */
922             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
923             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
924             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
925             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
926             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
927             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
928             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
929             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
930             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
931             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
932
933             fscal            = fvdw;
934
935             /* Update vectorial force */
936             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
937             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
938             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
939             
940             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
941             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
942             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq10             = _fjsp_mul_v2r8(iq1,jq0);
952
953             /* EWALD ELECTROSTATICS */
954
955             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
956             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
957             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
958             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
959             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
960
961             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
962                                          &ewtabF,&ewtabFn);
963             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
964             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
965
966             fscal            = felec;
967
968             /* Update vectorial force */
969             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
970             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
971             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
972             
973             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
974             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
975             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
976
977             /**************************
978              * CALCULATE INTERACTIONS *
979              **************************/
980
981             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq20             = _fjsp_mul_v2r8(iq2,jq0);
985
986             /* EWALD ELECTROSTATICS */
987
988             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
989             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
990             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
991             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
992             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
993
994             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
995                                          &ewtabF,&ewtabFn);
996             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
997             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
998
999             fscal            = felec;
1000
1001             /* Update vectorial force */
1002             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1003             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1004             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1005             
1006             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1007             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1008             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1018
1019             /* EWALD ELECTROSTATICS */
1020
1021             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1022             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1023             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1024             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1025             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1026
1027             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1028                                          &ewtabF,&ewtabFn);
1029             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1030             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1031
1032             fscal            = felec;
1033
1034             /* Update vectorial force */
1035             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1036             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1037             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1038             
1039             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1040             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1041             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1042
1043             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1044
1045             /* Inner loop uses 171 flops */
1046         }
1047
1048         if(jidx<j_index_end)
1049         {
1050
1051             jnrA             = jjnr[jidx];
1052             j_coord_offsetA  = DIM*jnrA;
1053
1054             /* load j atom coordinates */
1055             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1056                                               &jx0,&jy0,&jz0);
1057
1058             /* Calculate displacement vector */
1059             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1060             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1061             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1062             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1063             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1064             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1065             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1066             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1067             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1068             dx30             = _fjsp_sub_v2r8(ix3,jx0);
1069             dy30             = _fjsp_sub_v2r8(iy3,jy0);
1070             dz30             = _fjsp_sub_v2r8(iz3,jz0);
1071
1072             /* Calculate squared distance and things based on it */
1073             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1074             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1075             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1076             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
1077
1078             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1079             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1080             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1081             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
1082
1083             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1084             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1085             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
1086
1087             /* Load parameters for j particles */
1088             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1089             vdwjidx0A        = 2*vdwtype[jnrA+0];
1090
1091             fjx0             = _fjsp_setzero_v2r8();
1092             fjy0             = _fjsp_setzero_v2r8();
1093             fjz0             = _fjsp_setzero_v2r8();
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1103
1104             /* Calculate table index by multiplying r with table scale and truncate to integer */
1105             rt               = _fjsp_mul_v2r8(r00,vftabscale);
1106             itab_tmp         = _fjsp_dtox_v2r8(rt);
1107             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
1108             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
1109             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
1110
1111             vfconv.i[0]     *= 8;
1112             vfconv.i[1]     *= 8;
1113
1114             /* CUBIC SPLINE TABLE DISPERSION */
1115             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
1116             F                = _fjsp_setzero_v2r8();
1117             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1118             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
1119             H                = _fjsp_setzero_v2r8();
1120             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1121             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1122             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1123             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
1124
1125             /* CUBIC SPLINE TABLE REPULSION */
1126             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
1127             F                = _fjsp_setzero_v2r8();
1128             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1129             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
1130             H                = _fjsp_setzero_v2r8();
1131             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1132             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1133             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1134             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
1135             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
1136
1137             fscal            = fvdw;
1138
1139             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1140
1141             /* Update vectorial force */
1142             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1143             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1144             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1145             
1146             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1147             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1148             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1149
1150             /**************************
1151              * CALCULATE INTERACTIONS *
1152              **************************/
1153
1154             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1155
1156             /* Compute parameters for interactions between i and j atoms */
1157             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1158
1159             /* EWALD ELECTROSTATICS */
1160
1161             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1162             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1163             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1164             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1165             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1166
1167             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1168             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1169             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1170
1171             fscal            = felec;
1172
1173             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1174
1175             /* Update vectorial force */
1176             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1177             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1178             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1179             
1180             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1181             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1182             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1183
1184             /**************************
1185              * CALCULATE INTERACTIONS *
1186              **************************/
1187
1188             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1189
1190             /* Compute parameters for interactions between i and j atoms */
1191             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1192
1193             /* EWALD ELECTROSTATICS */
1194
1195             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1196             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1197             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1198             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1199             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1200
1201             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1202             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1203             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1204
1205             fscal            = felec;
1206
1207             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1208
1209             /* Update vectorial force */
1210             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1211             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1212             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1213             
1214             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1215             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1216             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1223
1224             /* Compute parameters for interactions between i and j atoms */
1225             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1226
1227             /* EWALD ELECTROSTATICS */
1228
1229             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1230             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1231             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1232             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1233             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1234
1235             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1236             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1237             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1238
1239             fscal            = felec;
1240
1241             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1242
1243             /* Update vectorial force */
1244             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1245             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1246             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1247             
1248             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1249             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1250             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1251
1252             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1253
1254             /* Inner loop uses 171 flops */
1255         }
1256
1257         /* End of innermost loop */
1258
1259         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1260                                               f+i_coord_offset,fshift+i_shift_offset);
1261
1262         /* Increment number of inner iterations */
1263         inneriter                  += j_index_end - j_index_start;
1264
1265         /* Outer loop uses 24 flops */
1266     }
1267
1268     /* Increment number of outer iterations */
1269     outeriter        += nri;
1270
1271     /* Update outer/inner flops */
1272
1273     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*171);
1274 }