Add C++ version of t_ilist
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
99     real             *vftab;
100     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     _fjsp_v2r8       itab_tmp;
103     _fjsp_v2r8       dummy_mask,cutoff_mask;
104     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
105     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
106     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_vdw->data;
126     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
127
128     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
131     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
136     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
137     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
165
166         fix0             = _fjsp_setzero_v2r8();
167         fiy0             = _fjsp_setzero_v2r8();
168         fiz0             = _fjsp_setzero_v2r8();
169         fix1             = _fjsp_setzero_v2r8();
170         fiy1             = _fjsp_setzero_v2r8();
171         fiz1             = _fjsp_setzero_v2r8();
172         fix2             = _fjsp_setzero_v2r8();
173         fiy2             = _fjsp_setzero_v2r8();
174         fiz2             = _fjsp_setzero_v2r8();
175
176         /* Reset potential sums */
177         velecsum         = _fjsp_setzero_v2r8();
178         vvdwsum          = _fjsp_setzero_v2r8();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _fjsp_sub_v2r8(ix0,jx0);
196             dy00             = _fjsp_sub_v2r8(iy0,jy0);
197             dz00             = _fjsp_sub_v2r8(iz0,jz0);
198             dx10             = _fjsp_sub_v2r8(ix1,jx0);
199             dy10             = _fjsp_sub_v2r8(iy1,jy0);
200             dz10             = _fjsp_sub_v2r8(iz1,jz0);
201             dx20             = _fjsp_sub_v2r8(ix2,jx0);
202             dy20             = _fjsp_sub_v2r8(iy2,jy0);
203             dz20             = _fjsp_sub_v2r8(iz2,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
207             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
208             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
209
210             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
211             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
212             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
213
214             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
215             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
216             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222
223             fjx0             = _fjsp_setzero_v2r8();
224             fjy0             = _fjsp_setzero_v2r8();
225             fjz0             = _fjsp_setzero_v2r8();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
232
233             /* Compute parameters for interactions between i and j atoms */
234             qq00             = _fjsp_mul_v2r8(iq0,jq0);
235             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
237
238             /* Calculate table index by multiplying r with table scale and truncate to integer */
239             rt               = _fjsp_mul_v2r8(r00,vftabscale);
240             itab_tmp         = _fjsp_dtox_v2r8(rt);
241             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
242             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
243             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
244
245             vfconv.i[0]     *= 8;
246             vfconv.i[1]     *= 8;
247
248             /* EWALD ELECTROSTATICS */
249
250             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
251             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
252             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
253             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
254             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
255
256             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
257             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
258             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
259             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
260             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
261             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
262             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
263             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
264             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
265             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
266
267             /* CUBIC SPLINE TABLE DISPERSION */
268             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
269             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
270             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
271             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
272             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
273             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
274             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
275             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
276             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
277             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
278             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
279
280             /* CUBIC SPLINE TABLE REPULSION */
281             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
282             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
283             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
284             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
285             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
286             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
287             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
288             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
289             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
290             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
291             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
292             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
293             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _fjsp_add_v2r8(velecsum,velec);
297             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
298
299             fscal            = _fjsp_add_v2r8(felec,fvdw);
300
301             /* Update vectorial force */
302             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
303             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
304             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
305             
306             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
307             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
308             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq10             = _fjsp_mul_v2r8(iq1,jq0);
318
319             /* EWALD ELECTROSTATICS */
320
321             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
322             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
323             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
324             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
325             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
326
327             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
328             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
329             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
330             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
331             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
332             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
333             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
334             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
335             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
336             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _fjsp_add_v2r8(velecsum,velec);
340
341             fscal            = felec;
342
343             /* Update vectorial force */
344             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
345             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
346             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
347             
348             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
349             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
350             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _fjsp_mul_v2r8(iq2,jq0);
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
365             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
366             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
367             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
368
369             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
370             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
371             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
372             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
373             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
374             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
375             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
376             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
377             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
378             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velecsum         = _fjsp_add_v2r8(velecsum,velec);
382
383             fscal            = felec;
384
385             /* Update vectorial force */
386             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
387             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
388             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
389             
390             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
391             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
392             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
393
394             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
395
396             /* Inner loop uses 169 flops */
397         }
398
399         if(jidx<j_index_end)
400         {
401
402             jnrA             = jjnr[jidx];
403             j_coord_offsetA  = DIM*jnrA;
404
405             /* load j atom coordinates */
406             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
407                                               &jx0,&jy0,&jz0);
408
409             /* Calculate displacement vector */
410             dx00             = _fjsp_sub_v2r8(ix0,jx0);
411             dy00             = _fjsp_sub_v2r8(iy0,jy0);
412             dz00             = _fjsp_sub_v2r8(iz0,jz0);
413             dx10             = _fjsp_sub_v2r8(ix1,jx0);
414             dy10             = _fjsp_sub_v2r8(iy1,jy0);
415             dz10             = _fjsp_sub_v2r8(iz1,jz0);
416             dx20             = _fjsp_sub_v2r8(ix2,jx0);
417             dy20             = _fjsp_sub_v2r8(iy2,jy0);
418             dz20             = _fjsp_sub_v2r8(iz2,jz0);
419
420             /* Calculate squared distance and things based on it */
421             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
422             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
423             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
424
425             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
426             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
427             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
428
429             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
430             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
431             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
432
433             /* Load parameters for j particles */
434             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
435             vdwjidx0A        = 2*vdwtype[jnrA+0];
436
437             fjx0             = _fjsp_setzero_v2r8();
438             fjy0             = _fjsp_setzero_v2r8();
439             fjz0             = _fjsp_setzero_v2r8();
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
446
447             /* Compute parameters for interactions between i and j atoms */
448             qq00             = _fjsp_mul_v2r8(iq0,jq0);
449             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
450                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
451
452             /* Calculate table index by multiplying r with table scale and truncate to integer */
453             rt               = _fjsp_mul_v2r8(r00,vftabscale);
454             itab_tmp         = _fjsp_dtox_v2r8(rt);
455             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
456             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
457             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
458
459             vfconv.i[0]     *= 8;
460             vfconv.i[1]     *= 8;
461
462             /* EWALD ELECTROSTATICS */
463
464             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
465             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
466             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
467             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
468             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
469
470             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
471             ewtabD           = _fjsp_setzero_v2r8();
472             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
473             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
474             ewtabFn          = _fjsp_setzero_v2r8();
475             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
476             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
477             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
478             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
479             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
480
481             /* CUBIC SPLINE TABLE DISPERSION */
482             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
483             F                = _fjsp_setzero_v2r8();
484             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
485             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
486             H                = _fjsp_setzero_v2r8();
487             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
488             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
489             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
490             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
491             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
492             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
493
494             /* CUBIC SPLINE TABLE REPULSION */
495             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
496             F                = _fjsp_setzero_v2r8();
497             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
498             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
499             H                = _fjsp_setzero_v2r8();
500             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
501             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
502             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
503             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
504             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
505             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
506             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
507             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
511             velecsum         = _fjsp_add_v2r8(velecsum,velec);
512             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
513             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
514
515             fscal            = _fjsp_add_v2r8(felec,fvdw);
516
517             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
518
519             /* Update vectorial force */
520             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
521             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
522             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
523             
524             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
525             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
526             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq10             = _fjsp_mul_v2r8(iq1,jq0);
536
537             /* EWALD ELECTROSTATICS */
538
539             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
540             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
541             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
542             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
543             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
544
545             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
546             ewtabD           = _fjsp_setzero_v2r8();
547             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
548             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
549             ewtabFn          = _fjsp_setzero_v2r8();
550             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
551             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
552             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
553             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
554             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
558             velecsum         = _fjsp_add_v2r8(velecsum,velec);
559
560             fscal            = felec;
561
562             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
563
564             /* Update vectorial force */
565             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
566             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
567             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
568             
569             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
570             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
571             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq20             = _fjsp_mul_v2r8(iq2,jq0);
581
582             /* EWALD ELECTROSTATICS */
583
584             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
585             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
586             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
587             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
588             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
589
590             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
591             ewtabD           = _fjsp_setzero_v2r8();
592             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
593             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
594             ewtabFn          = _fjsp_setzero_v2r8();
595             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
596             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
597             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
598             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
599             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
600
601             /* Update potential sum for this i atom from the interaction with this j atom. */
602             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
603             velecsum         = _fjsp_add_v2r8(velecsum,velec);
604
605             fscal            = felec;
606
607             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
608
609             /* Update vectorial force */
610             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
611             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
612             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
613             
614             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
615             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
616             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
617
618             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
619
620             /* Inner loop uses 169 flops */
621         }
622
623         /* End of innermost loop */
624
625         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
626                                               f+i_coord_offset,fshift+i_shift_offset);
627
628         ggid                        = gid[iidx];
629         /* Update potential energies */
630         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
631         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
632
633         /* Increment number of inner iterations */
634         inneriter                  += j_index_end - j_index_start;
635
636         /* Outer loop uses 20 flops */
637     }
638
639     /* Increment number of outer iterations */
640     outeriter        += nri;
641
642     /* Update outer/inner flops */
643
644     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*169);
645 }
646 /*
647  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sparc64_hpc_ace_double
648  * Electrostatics interaction: Ewald
649  * VdW interaction:            CubicSplineTable
650  * Geometry:                   Water3-Particle
651  * Calculate force/pot:        Force
652  */
653 void
654 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sparc64_hpc_ace_double
655                     (t_nblist                    * gmx_restrict       nlist,
656                      rvec                        * gmx_restrict          xx,
657                      rvec                        * gmx_restrict          ff,
658                      struct t_forcerec           * gmx_restrict          fr,
659                      t_mdatoms                   * gmx_restrict     mdatoms,
660                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
661                      t_nrnb                      * gmx_restrict        nrnb)
662 {
663     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
664      * just 0 for non-waters.
665      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
666      * jnr indices corresponding to data put in the four positions in the SIMD register.
667      */
668     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
669     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
670     int              jnrA,jnrB;
671     int              j_coord_offsetA,j_coord_offsetB;
672     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
673     real             rcutoff_scalar;
674     real             *shiftvec,*fshift,*x,*f;
675     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
676     int              vdwioffset0;
677     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
678     int              vdwioffset1;
679     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
680     int              vdwioffset2;
681     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
682     int              vdwjidx0A,vdwjidx0B;
683     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
684     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
685     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
686     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
687     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
688     real             *charge;
689     int              nvdwtype;
690     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
691     int              *vdwtype;
692     real             *vdwparam;
693     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
694     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
695     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
696     real             *vftab;
697     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
698     real             *ewtab;
699     _fjsp_v2r8       itab_tmp;
700     _fjsp_v2r8       dummy_mask,cutoff_mask;
701     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
702     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
703     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
704
705     x                = xx[0];
706     f                = ff[0];
707
708     nri              = nlist->nri;
709     iinr             = nlist->iinr;
710     jindex           = nlist->jindex;
711     jjnr             = nlist->jjnr;
712     shiftidx         = nlist->shift;
713     gid              = nlist->gid;
714     shiftvec         = fr->shift_vec[0];
715     fshift           = fr->fshift[0];
716     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
717     charge           = mdatoms->chargeA;
718     nvdwtype         = fr->ntype;
719     vdwparam         = fr->nbfp;
720     vdwtype          = mdatoms->typeA;
721
722     vftab            = kernel_data->table_vdw->data;
723     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
724
725     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
726     ewtab            = fr->ic->tabq_coul_F;
727     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
728     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
729
730     /* Setup water-specific parameters */
731     inr              = nlist->iinr[0];
732     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
733     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
734     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
735     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
736
737     /* Avoid stupid compiler warnings */
738     jnrA = jnrB = 0;
739     j_coord_offsetA = 0;
740     j_coord_offsetB = 0;
741
742     outeriter        = 0;
743     inneriter        = 0;
744
745     /* Start outer loop over neighborlists */
746     for(iidx=0; iidx<nri; iidx++)
747     {
748         /* Load shift vector for this list */
749         i_shift_offset   = DIM*shiftidx[iidx];
750
751         /* Load limits for loop over neighbors */
752         j_index_start    = jindex[iidx];
753         j_index_end      = jindex[iidx+1];
754
755         /* Get outer coordinate index */
756         inr              = iinr[iidx];
757         i_coord_offset   = DIM*inr;
758
759         /* Load i particle coords and add shift vector */
760         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
761                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
762
763         fix0             = _fjsp_setzero_v2r8();
764         fiy0             = _fjsp_setzero_v2r8();
765         fiz0             = _fjsp_setzero_v2r8();
766         fix1             = _fjsp_setzero_v2r8();
767         fiy1             = _fjsp_setzero_v2r8();
768         fiz1             = _fjsp_setzero_v2r8();
769         fix2             = _fjsp_setzero_v2r8();
770         fiy2             = _fjsp_setzero_v2r8();
771         fiz2             = _fjsp_setzero_v2r8();
772
773         /* Start inner kernel loop */
774         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
775         {
776
777             /* Get j neighbor index, and coordinate index */
778             jnrA             = jjnr[jidx];
779             jnrB             = jjnr[jidx+1];
780             j_coord_offsetA  = DIM*jnrA;
781             j_coord_offsetB  = DIM*jnrB;
782
783             /* load j atom coordinates */
784             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
785                                               &jx0,&jy0,&jz0);
786
787             /* Calculate displacement vector */
788             dx00             = _fjsp_sub_v2r8(ix0,jx0);
789             dy00             = _fjsp_sub_v2r8(iy0,jy0);
790             dz00             = _fjsp_sub_v2r8(iz0,jz0);
791             dx10             = _fjsp_sub_v2r8(ix1,jx0);
792             dy10             = _fjsp_sub_v2r8(iy1,jy0);
793             dz10             = _fjsp_sub_v2r8(iz1,jz0);
794             dx20             = _fjsp_sub_v2r8(ix2,jx0);
795             dy20             = _fjsp_sub_v2r8(iy2,jy0);
796             dz20             = _fjsp_sub_v2r8(iz2,jz0);
797
798             /* Calculate squared distance and things based on it */
799             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
800             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
801             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
802
803             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
804             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
805             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
806
807             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
808             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
809             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
810
811             /* Load parameters for j particles */
812             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
813             vdwjidx0A        = 2*vdwtype[jnrA+0];
814             vdwjidx0B        = 2*vdwtype[jnrB+0];
815
816             fjx0             = _fjsp_setzero_v2r8();
817             fjy0             = _fjsp_setzero_v2r8();
818             fjz0             = _fjsp_setzero_v2r8();
819
820             /**************************
821              * CALCULATE INTERACTIONS *
822              **************************/
823
824             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
825
826             /* Compute parameters for interactions between i and j atoms */
827             qq00             = _fjsp_mul_v2r8(iq0,jq0);
828             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
829                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
830
831             /* Calculate table index by multiplying r with table scale and truncate to integer */
832             rt               = _fjsp_mul_v2r8(r00,vftabscale);
833             itab_tmp         = _fjsp_dtox_v2r8(rt);
834             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
835             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
836             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
837
838             vfconv.i[0]     *= 8;
839             vfconv.i[1]     *= 8;
840
841             /* EWALD ELECTROSTATICS */
842
843             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
844             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
845             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
846             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
847             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
848
849             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
850                                          &ewtabF,&ewtabFn);
851             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
852             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
853
854             /* CUBIC SPLINE TABLE DISPERSION */
855             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
856             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
857             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
858             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
859             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
860             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
861             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
862             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
863             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
864
865             /* CUBIC SPLINE TABLE REPULSION */
866             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
867             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
868             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
869             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
870             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
871             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
872             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
873             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
874             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
875             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
876
877             fscal            = _fjsp_add_v2r8(felec,fvdw);
878
879             /* Update vectorial force */
880             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
881             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
882             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
883             
884             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
885             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
886             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
887
888             /**************************
889              * CALCULATE INTERACTIONS *
890              **************************/
891
892             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
893
894             /* Compute parameters for interactions between i and j atoms */
895             qq10             = _fjsp_mul_v2r8(iq1,jq0);
896
897             /* EWALD ELECTROSTATICS */
898
899             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
900             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
901             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
902             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
903             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
904
905             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
906                                          &ewtabF,&ewtabFn);
907             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
908             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
909
910             fscal            = felec;
911
912             /* Update vectorial force */
913             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
914             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
915             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
916             
917             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
918             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
919             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
926
927             /* Compute parameters for interactions between i and j atoms */
928             qq20             = _fjsp_mul_v2r8(iq2,jq0);
929
930             /* EWALD ELECTROSTATICS */
931
932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
933             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
934             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
935             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
936             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
937
938             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
939                                          &ewtabF,&ewtabFn);
940             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
941             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
942
943             fscal            = felec;
944
945             /* Update vectorial force */
946             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
947             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
948             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
949             
950             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
951             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
952             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
953
954             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
955
956             /* Inner loop uses 146 flops */
957         }
958
959         if(jidx<j_index_end)
960         {
961
962             jnrA             = jjnr[jidx];
963             j_coord_offsetA  = DIM*jnrA;
964
965             /* load j atom coordinates */
966             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
967                                               &jx0,&jy0,&jz0);
968
969             /* Calculate displacement vector */
970             dx00             = _fjsp_sub_v2r8(ix0,jx0);
971             dy00             = _fjsp_sub_v2r8(iy0,jy0);
972             dz00             = _fjsp_sub_v2r8(iz0,jz0);
973             dx10             = _fjsp_sub_v2r8(ix1,jx0);
974             dy10             = _fjsp_sub_v2r8(iy1,jy0);
975             dz10             = _fjsp_sub_v2r8(iz1,jz0);
976             dx20             = _fjsp_sub_v2r8(ix2,jx0);
977             dy20             = _fjsp_sub_v2r8(iy2,jy0);
978             dz20             = _fjsp_sub_v2r8(iz2,jz0);
979
980             /* Calculate squared distance and things based on it */
981             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
982             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
983             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
984
985             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
986             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
987             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
988
989             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
990             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
991             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
992
993             /* Load parameters for j particles */
994             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
995             vdwjidx0A        = 2*vdwtype[jnrA+0];
996
997             fjx0             = _fjsp_setzero_v2r8();
998             fjy0             = _fjsp_setzero_v2r8();
999             fjz0             = _fjsp_setzero_v2r8();
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1009             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1010                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1011
1012             /* Calculate table index by multiplying r with table scale and truncate to integer */
1013             rt               = _fjsp_mul_v2r8(r00,vftabscale);
1014             itab_tmp         = _fjsp_dtox_v2r8(rt);
1015             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
1016             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
1017             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
1018
1019             vfconv.i[0]     *= 8;
1020             vfconv.i[1]     *= 8;
1021
1022             /* EWALD ELECTROSTATICS */
1023
1024             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1025             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1026             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1027             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1028             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1029
1030             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1031             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1032             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1033
1034             /* CUBIC SPLINE TABLE DISPERSION */
1035             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
1036             F                = _fjsp_setzero_v2r8();
1037             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1038             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
1039             H                = _fjsp_setzero_v2r8();
1040             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1041             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1042             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1043             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
1044
1045             /* CUBIC SPLINE TABLE REPULSION */
1046             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
1047             F                = _fjsp_setzero_v2r8();
1048             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1049             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
1050             H                = _fjsp_setzero_v2r8();
1051             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1052             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1053             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1054             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
1055             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
1056
1057             fscal            = _fjsp_add_v2r8(felec,fvdw);
1058
1059             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1060
1061             /* Update vectorial force */
1062             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1063             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1064             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1065             
1066             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1067             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1068             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1069
1070             /**************************
1071              * CALCULATE INTERACTIONS *
1072              **************************/
1073
1074             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1075
1076             /* Compute parameters for interactions between i and j atoms */
1077             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1078
1079             /* EWALD ELECTROSTATICS */
1080
1081             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1082             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1083             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1084             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1085             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1086
1087             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1088             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1089             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1090
1091             fscal            = felec;
1092
1093             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1094
1095             /* Update vectorial force */
1096             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1097             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1098             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1099             
1100             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1101             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1102             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1103
1104             /**************************
1105              * CALCULATE INTERACTIONS *
1106              **************************/
1107
1108             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1112
1113             /* EWALD ELECTROSTATICS */
1114
1115             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1116             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1117             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1118             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1119             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1120
1121             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1122             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1123             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1124
1125             fscal            = felec;
1126
1127             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1128
1129             /* Update vectorial force */
1130             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1131             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1132             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1133             
1134             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1135             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1136             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1137
1138             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1139
1140             /* Inner loop uses 146 flops */
1141         }
1142
1143         /* End of innermost loop */
1144
1145         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1146                                               f+i_coord_offset,fshift+i_shift_offset);
1147
1148         /* Increment number of inner iterations */
1149         inneriter                  += j_index_end - j_index_start;
1150
1151         /* Outer loop uses 18 flops */
1152     }
1153
1154     /* Increment number of outer iterations */
1155     outeriter        += nri;
1156
1157     /* Update outer/inner flops */
1158
1159     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1160 }