Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/legacyheaders/vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            CubicSplineTable
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
101     real             *vftab;
102     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     _fjsp_v2r8       itab_tmp;
105     _fjsp_v2r8       dummy_mask,cutoff_mask;
106     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
107     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
108     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
109
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
129
130     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
131     ewtab            = fr->ic->tabq_coul_FDV0;
132     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
133     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
138     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
139     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168         fix0             = _fjsp_setzero_v2r8();
169         fiy0             = _fjsp_setzero_v2r8();
170         fiz0             = _fjsp_setzero_v2r8();
171         fix1             = _fjsp_setzero_v2r8();
172         fiy1             = _fjsp_setzero_v2r8();
173         fiz1             = _fjsp_setzero_v2r8();
174         fix2             = _fjsp_setzero_v2r8();
175         fiy2             = _fjsp_setzero_v2r8();
176         fiz2             = _fjsp_setzero_v2r8();
177
178         /* Reset potential sums */
179         velecsum         = _fjsp_setzero_v2r8();
180         vvdwsum          = _fjsp_setzero_v2r8();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _fjsp_sub_v2r8(ix0,jx0);
198             dy00             = _fjsp_sub_v2r8(iy0,jy0);
199             dz00             = _fjsp_sub_v2r8(iz0,jz0);
200             dx10             = _fjsp_sub_v2r8(ix1,jx0);
201             dy10             = _fjsp_sub_v2r8(iy1,jy0);
202             dz10             = _fjsp_sub_v2r8(iz1,jz0);
203             dx20             = _fjsp_sub_v2r8(ix2,jx0);
204             dy20             = _fjsp_sub_v2r8(iy2,jy0);
205             dz20             = _fjsp_sub_v2r8(iz2,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
209             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
210             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
211
212             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
213             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
214             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
215
216             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
217             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
218             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224
225             fjx0             = _fjsp_setzero_v2r8();
226             fjy0             = _fjsp_setzero_v2r8();
227             fjz0             = _fjsp_setzero_v2r8();
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq00             = _fjsp_mul_v2r8(iq0,jq0);
237             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
239
240             /* Calculate table index by multiplying r with table scale and truncate to integer */
241             rt               = _fjsp_mul_v2r8(r00,vftabscale);
242             itab_tmp         = _fjsp_dtox_v2r8(rt);
243             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
244             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
245             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
246
247             vfconv.i[0]     *= 8;
248             vfconv.i[1]     *= 8;
249
250             /* EWALD ELECTROSTATICS */
251
252             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
253             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
254             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
255             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
256             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
257
258             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
259             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
260             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
261             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
262             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
263             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
264             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
265             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
266             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
267             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
268
269             /* CUBIC SPLINE TABLE DISPERSION */
270             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
271             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
272             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
273             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
274             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
275             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
276             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
277             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
278             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
279             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
280             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
281
282             /* CUBIC SPLINE TABLE REPULSION */
283             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
284             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
285             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
286             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
287             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
288             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
289             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
290             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
291             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
292             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
293             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
294             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
295             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _fjsp_add_v2r8(velecsum,velec);
299             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
300
301             fscal            = _fjsp_add_v2r8(felec,fvdw);
302
303             /* Update vectorial force */
304             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
305             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
306             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
307             
308             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
309             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
310             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq10             = _fjsp_mul_v2r8(iq1,jq0);
320
321             /* EWALD ELECTROSTATICS */
322
323             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
324             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
325             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
326             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
327             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
328
329             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
330             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
331             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
332             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
333             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
334             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
335             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
336             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
337             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
338             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _fjsp_add_v2r8(velecsum,velec);
342
343             fscal            = felec;
344
345             /* Update vectorial force */
346             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
347             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
348             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
349             
350             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
351             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
352             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq20             = _fjsp_mul_v2r8(iq2,jq0);
362
363             /* EWALD ELECTROSTATICS */
364
365             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
366             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
367             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
368             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
369             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
370
371             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
372             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
373             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
374             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
375             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
376             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
377             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
378             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
379             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
380             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velecsum         = _fjsp_add_v2r8(velecsum,velec);
384
385             fscal            = felec;
386
387             /* Update vectorial force */
388             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
389             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
390             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
391             
392             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
393             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
394             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
395
396             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
397
398             /* Inner loop uses 169 flops */
399         }
400
401         if(jidx<j_index_end)
402         {
403
404             jnrA             = jjnr[jidx];
405             j_coord_offsetA  = DIM*jnrA;
406
407             /* load j atom coordinates */
408             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
409                                               &jx0,&jy0,&jz0);
410
411             /* Calculate displacement vector */
412             dx00             = _fjsp_sub_v2r8(ix0,jx0);
413             dy00             = _fjsp_sub_v2r8(iy0,jy0);
414             dz00             = _fjsp_sub_v2r8(iz0,jz0);
415             dx10             = _fjsp_sub_v2r8(ix1,jx0);
416             dy10             = _fjsp_sub_v2r8(iy1,jy0);
417             dz10             = _fjsp_sub_v2r8(iz1,jz0);
418             dx20             = _fjsp_sub_v2r8(ix2,jx0);
419             dy20             = _fjsp_sub_v2r8(iy2,jy0);
420             dz20             = _fjsp_sub_v2r8(iz2,jz0);
421
422             /* Calculate squared distance and things based on it */
423             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
424             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
425             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
426
427             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
428             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
429             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
430
431             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
432             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
433             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
434
435             /* Load parameters for j particles */
436             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
437             vdwjidx0A        = 2*vdwtype[jnrA+0];
438
439             fjx0             = _fjsp_setzero_v2r8();
440             fjy0             = _fjsp_setzero_v2r8();
441             fjz0             = _fjsp_setzero_v2r8();
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
448
449             /* Compute parameters for interactions between i and j atoms */
450             qq00             = _fjsp_mul_v2r8(iq0,jq0);
451             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
452                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
453
454             /* Calculate table index by multiplying r with table scale and truncate to integer */
455             rt               = _fjsp_mul_v2r8(r00,vftabscale);
456             itab_tmp         = _fjsp_dtox_v2r8(rt);
457             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
458             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
459             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
460
461             vfconv.i[0]     *= 8;
462             vfconv.i[1]     *= 8;
463
464             /* EWALD ELECTROSTATICS */
465
466             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
467             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
468             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
469             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
470             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
471
472             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
473             ewtabD           = _fjsp_setzero_v2r8();
474             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
475             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
476             ewtabFn          = _fjsp_setzero_v2r8();
477             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
478             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
479             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
480             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
481             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
482
483             /* CUBIC SPLINE TABLE DISPERSION */
484             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
485             F                = _fjsp_setzero_v2r8();
486             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
487             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
488             H                = _fjsp_setzero_v2r8();
489             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
490             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
491             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
492             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
493             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
494             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
495
496             /* CUBIC SPLINE TABLE REPULSION */
497             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
498             F                = _fjsp_setzero_v2r8();
499             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
500             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
501             H                = _fjsp_setzero_v2r8();
502             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
503             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
504             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
505             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
506             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
507             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
508             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
509             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
510
511             /* Update potential sum for this i atom from the interaction with this j atom. */
512             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
513             velecsum         = _fjsp_add_v2r8(velecsum,velec);
514             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
515             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
516
517             fscal            = _fjsp_add_v2r8(felec,fvdw);
518
519             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
520
521             /* Update vectorial force */
522             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
523             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
524             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
525             
526             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
527             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
528             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq10             = _fjsp_mul_v2r8(iq1,jq0);
538
539             /* EWALD ELECTROSTATICS */
540
541             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
543             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
544             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
545             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
546
547             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
548             ewtabD           = _fjsp_setzero_v2r8();
549             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
550             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
551             ewtabFn          = _fjsp_setzero_v2r8();
552             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
553             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
554             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
555             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
556             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
560             velecsum         = _fjsp_add_v2r8(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
565
566             /* Update vectorial force */
567             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
568             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
569             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
570             
571             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
572             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
573             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq20             = _fjsp_mul_v2r8(iq2,jq0);
583
584             /* EWALD ELECTROSTATICS */
585
586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
588             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
589             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
590             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
591
592             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
593             ewtabD           = _fjsp_setzero_v2r8();
594             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
595             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
596             ewtabFn          = _fjsp_setzero_v2r8();
597             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
598             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
599             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
600             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
601             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
602
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
605             velecsum         = _fjsp_add_v2r8(velecsum,velec);
606
607             fscal            = felec;
608
609             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
610
611             /* Update vectorial force */
612             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
613             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
614             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
615             
616             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
617             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
618             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
619
620             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
621
622             /* Inner loop uses 169 flops */
623         }
624
625         /* End of innermost loop */
626
627         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
628                                               f+i_coord_offset,fshift+i_shift_offset);
629
630         ggid                        = gid[iidx];
631         /* Update potential energies */
632         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
633         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
634
635         /* Increment number of inner iterations */
636         inneriter                  += j_index_end - j_index_start;
637
638         /* Outer loop uses 20 flops */
639     }
640
641     /* Increment number of outer iterations */
642     outeriter        += nri;
643
644     /* Update outer/inner flops */
645
646     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*169);
647 }
648 /*
649  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sparc64_hpc_ace_double
650  * Electrostatics interaction: Ewald
651  * VdW interaction:            CubicSplineTable
652  * Geometry:                   Water3-Particle
653  * Calculate force/pot:        Force
654  */
655 void
656 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sparc64_hpc_ace_double
657                     (t_nblist                    * gmx_restrict       nlist,
658                      rvec                        * gmx_restrict          xx,
659                      rvec                        * gmx_restrict          ff,
660                      t_forcerec                  * gmx_restrict          fr,
661                      t_mdatoms                   * gmx_restrict     mdatoms,
662                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
663                      t_nrnb                      * gmx_restrict        nrnb)
664 {
665     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
666      * just 0 for non-waters.
667      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
668      * jnr indices corresponding to data put in the four positions in the SIMD register.
669      */
670     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
671     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
672     int              jnrA,jnrB;
673     int              j_coord_offsetA,j_coord_offsetB;
674     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
675     real             rcutoff_scalar;
676     real             *shiftvec,*fshift,*x,*f;
677     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
678     int              vdwioffset0;
679     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
680     int              vdwioffset1;
681     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
682     int              vdwioffset2;
683     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
684     int              vdwjidx0A,vdwjidx0B;
685     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
686     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
687     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
688     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
689     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
690     real             *charge;
691     int              nvdwtype;
692     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
693     int              *vdwtype;
694     real             *vdwparam;
695     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
696     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
697     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
698     real             *vftab;
699     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
700     real             *ewtab;
701     _fjsp_v2r8       itab_tmp;
702     _fjsp_v2r8       dummy_mask,cutoff_mask;
703     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
704     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
705     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
706
707     x                = xx[0];
708     f                = ff[0];
709
710     nri              = nlist->nri;
711     iinr             = nlist->iinr;
712     jindex           = nlist->jindex;
713     jjnr             = nlist->jjnr;
714     shiftidx         = nlist->shift;
715     gid              = nlist->gid;
716     shiftvec         = fr->shift_vec[0];
717     fshift           = fr->fshift[0];
718     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
719     charge           = mdatoms->chargeA;
720     nvdwtype         = fr->ntype;
721     vdwparam         = fr->nbfp;
722     vdwtype          = mdatoms->typeA;
723
724     vftab            = kernel_data->table_vdw->data;
725     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
726
727     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
728     ewtab            = fr->ic->tabq_coul_F;
729     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
730     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
731
732     /* Setup water-specific parameters */
733     inr              = nlist->iinr[0];
734     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
735     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
736     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
737     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
738
739     /* Avoid stupid compiler warnings */
740     jnrA = jnrB = 0;
741     j_coord_offsetA = 0;
742     j_coord_offsetB = 0;
743
744     outeriter        = 0;
745     inneriter        = 0;
746
747     /* Start outer loop over neighborlists */
748     for(iidx=0; iidx<nri; iidx++)
749     {
750         /* Load shift vector for this list */
751         i_shift_offset   = DIM*shiftidx[iidx];
752
753         /* Load limits for loop over neighbors */
754         j_index_start    = jindex[iidx];
755         j_index_end      = jindex[iidx+1];
756
757         /* Get outer coordinate index */
758         inr              = iinr[iidx];
759         i_coord_offset   = DIM*inr;
760
761         /* Load i particle coords and add shift vector */
762         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
763                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
764
765         fix0             = _fjsp_setzero_v2r8();
766         fiy0             = _fjsp_setzero_v2r8();
767         fiz0             = _fjsp_setzero_v2r8();
768         fix1             = _fjsp_setzero_v2r8();
769         fiy1             = _fjsp_setzero_v2r8();
770         fiz1             = _fjsp_setzero_v2r8();
771         fix2             = _fjsp_setzero_v2r8();
772         fiy2             = _fjsp_setzero_v2r8();
773         fiz2             = _fjsp_setzero_v2r8();
774
775         /* Start inner kernel loop */
776         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
777         {
778
779             /* Get j neighbor index, and coordinate index */
780             jnrA             = jjnr[jidx];
781             jnrB             = jjnr[jidx+1];
782             j_coord_offsetA  = DIM*jnrA;
783             j_coord_offsetB  = DIM*jnrB;
784
785             /* load j atom coordinates */
786             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
787                                               &jx0,&jy0,&jz0);
788
789             /* Calculate displacement vector */
790             dx00             = _fjsp_sub_v2r8(ix0,jx0);
791             dy00             = _fjsp_sub_v2r8(iy0,jy0);
792             dz00             = _fjsp_sub_v2r8(iz0,jz0);
793             dx10             = _fjsp_sub_v2r8(ix1,jx0);
794             dy10             = _fjsp_sub_v2r8(iy1,jy0);
795             dz10             = _fjsp_sub_v2r8(iz1,jz0);
796             dx20             = _fjsp_sub_v2r8(ix2,jx0);
797             dy20             = _fjsp_sub_v2r8(iy2,jy0);
798             dz20             = _fjsp_sub_v2r8(iz2,jz0);
799
800             /* Calculate squared distance and things based on it */
801             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
802             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
803             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
804
805             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
806             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
807             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
808
809             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
810             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
811             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
812
813             /* Load parameters for j particles */
814             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
815             vdwjidx0A        = 2*vdwtype[jnrA+0];
816             vdwjidx0B        = 2*vdwtype[jnrB+0];
817
818             fjx0             = _fjsp_setzero_v2r8();
819             fjy0             = _fjsp_setzero_v2r8();
820             fjz0             = _fjsp_setzero_v2r8();
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
827
828             /* Compute parameters for interactions between i and j atoms */
829             qq00             = _fjsp_mul_v2r8(iq0,jq0);
830             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
831                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
832
833             /* Calculate table index by multiplying r with table scale and truncate to integer */
834             rt               = _fjsp_mul_v2r8(r00,vftabscale);
835             itab_tmp         = _fjsp_dtox_v2r8(rt);
836             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
837             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
838             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
839
840             vfconv.i[0]     *= 8;
841             vfconv.i[1]     *= 8;
842
843             /* EWALD ELECTROSTATICS */
844
845             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
846             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
847             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
848             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
849             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
850
851             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
852                                          &ewtabF,&ewtabFn);
853             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
854             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
855
856             /* CUBIC SPLINE TABLE DISPERSION */
857             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
858             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
859             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
860             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
861             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
862             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
863             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
864             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
865             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
866
867             /* CUBIC SPLINE TABLE REPULSION */
868             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
869             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
870             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
871             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
872             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
873             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
874             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
875             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
876             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
877             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
878
879             fscal            = _fjsp_add_v2r8(felec,fvdw);
880
881             /* Update vectorial force */
882             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
883             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
884             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
885             
886             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
887             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
888             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
895
896             /* Compute parameters for interactions between i and j atoms */
897             qq10             = _fjsp_mul_v2r8(iq1,jq0);
898
899             /* EWALD ELECTROSTATICS */
900
901             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
902             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
903             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
904             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
905             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
906
907             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
908                                          &ewtabF,&ewtabFn);
909             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
910             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
911
912             fscal            = felec;
913
914             /* Update vectorial force */
915             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
916             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
917             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
918             
919             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
920             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
921             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
928
929             /* Compute parameters for interactions between i and j atoms */
930             qq20             = _fjsp_mul_v2r8(iq2,jq0);
931
932             /* EWALD ELECTROSTATICS */
933
934             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
935             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
936             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
937             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
938             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
939
940             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
941                                          &ewtabF,&ewtabFn);
942             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
943             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
944
945             fscal            = felec;
946
947             /* Update vectorial force */
948             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
949             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
950             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
951             
952             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
953             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
954             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
955
956             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
957
958             /* Inner loop uses 146 flops */
959         }
960
961         if(jidx<j_index_end)
962         {
963
964             jnrA             = jjnr[jidx];
965             j_coord_offsetA  = DIM*jnrA;
966
967             /* load j atom coordinates */
968             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
969                                               &jx0,&jy0,&jz0);
970
971             /* Calculate displacement vector */
972             dx00             = _fjsp_sub_v2r8(ix0,jx0);
973             dy00             = _fjsp_sub_v2r8(iy0,jy0);
974             dz00             = _fjsp_sub_v2r8(iz0,jz0);
975             dx10             = _fjsp_sub_v2r8(ix1,jx0);
976             dy10             = _fjsp_sub_v2r8(iy1,jy0);
977             dz10             = _fjsp_sub_v2r8(iz1,jz0);
978             dx20             = _fjsp_sub_v2r8(ix2,jx0);
979             dy20             = _fjsp_sub_v2r8(iy2,jy0);
980             dz20             = _fjsp_sub_v2r8(iz2,jz0);
981
982             /* Calculate squared distance and things based on it */
983             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
984             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
985             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
986
987             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
988             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
989             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
990
991             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
992             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
993             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
994
995             /* Load parameters for j particles */
996             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
997             vdwjidx0A        = 2*vdwtype[jnrA+0];
998
999             fjx0             = _fjsp_setzero_v2r8();
1000             fjy0             = _fjsp_setzero_v2r8();
1001             fjz0             = _fjsp_setzero_v2r8();
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1011             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1012                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1013
1014             /* Calculate table index by multiplying r with table scale and truncate to integer */
1015             rt               = _fjsp_mul_v2r8(r00,vftabscale);
1016             itab_tmp         = _fjsp_dtox_v2r8(rt);
1017             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
1018             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
1019             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
1020
1021             vfconv.i[0]     *= 8;
1022             vfconv.i[1]     *= 8;
1023
1024             /* EWALD ELECTROSTATICS */
1025
1026             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1027             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1028             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1029             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1030             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1031
1032             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1033             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1034             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1035
1036             /* CUBIC SPLINE TABLE DISPERSION */
1037             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
1038             F                = _fjsp_setzero_v2r8();
1039             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1040             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
1041             H                = _fjsp_setzero_v2r8();
1042             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1043             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1044             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1045             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
1046
1047             /* CUBIC SPLINE TABLE REPULSION */
1048             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
1049             F                = _fjsp_setzero_v2r8();
1050             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1051             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
1052             H                = _fjsp_setzero_v2r8();
1053             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1054             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1055             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1056             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
1057             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
1058
1059             fscal            = _fjsp_add_v2r8(felec,fvdw);
1060
1061             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1062
1063             /* Update vectorial force */
1064             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1065             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1066             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1067             
1068             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1069             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1070             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1071
1072             /**************************
1073              * CALCULATE INTERACTIONS *
1074              **************************/
1075
1076             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1077
1078             /* Compute parameters for interactions between i and j atoms */
1079             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1080
1081             /* EWALD ELECTROSTATICS */
1082
1083             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1084             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1085             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1086             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1087             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1088
1089             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1090             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1091             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1092
1093             fscal            = felec;
1094
1095             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1096
1097             /* Update vectorial force */
1098             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1099             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1100             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1101             
1102             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1103             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1104             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1105
1106             /**************************
1107              * CALCULATE INTERACTIONS *
1108              **************************/
1109
1110             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1114
1115             /* EWALD ELECTROSTATICS */
1116
1117             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1118             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1119             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1120             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1121             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1122
1123             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1124             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1125             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1126
1127             fscal            = felec;
1128
1129             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1130
1131             /* Update vectorial force */
1132             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1133             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1134             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1135             
1136             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1137             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1138             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1139
1140             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1141
1142             /* Inner loop uses 146 flops */
1143         }
1144
1145         /* End of innermost loop */
1146
1147         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1148                                               f+i_coord_offset,fshift+i_shift_offset);
1149
1150         /* Increment number of inner iterations */
1151         inneriter                  += j_index_end - j_index_start;
1152
1153         /* Outer loop uses 18 flops */
1154     }
1155
1156     /* Increment number of outer iterations */
1157     outeriter        += nri;
1158
1159     /* Update outer/inner flops */
1160
1161     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1162 }