4f36953596bf40ecdc0578844499fbd6d2061692
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
99     real             *vftab;
100     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     _fjsp_v2r8       itab_tmp;
103     _fjsp_v2r8       dummy_mask,cutoff_mask;
104     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
105     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
106     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_vdw->data;
126     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
127
128     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
131     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
136     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
137     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
165
166         fix0             = _fjsp_setzero_v2r8();
167         fiy0             = _fjsp_setzero_v2r8();
168         fiz0             = _fjsp_setzero_v2r8();
169         fix1             = _fjsp_setzero_v2r8();
170         fiy1             = _fjsp_setzero_v2r8();
171         fiz1             = _fjsp_setzero_v2r8();
172         fix2             = _fjsp_setzero_v2r8();
173         fiy2             = _fjsp_setzero_v2r8();
174         fiz2             = _fjsp_setzero_v2r8();
175
176         /* Reset potential sums */
177         velecsum         = _fjsp_setzero_v2r8();
178         vvdwsum          = _fjsp_setzero_v2r8();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _fjsp_sub_v2r8(ix0,jx0);
196             dy00             = _fjsp_sub_v2r8(iy0,jy0);
197             dz00             = _fjsp_sub_v2r8(iz0,jz0);
198             dx10             = _fjsp_sub_v2r8(ix1,jx0);
199             dy10             = _fjsp_sub_v2r8(iy1,jy0);
200             dz10             = _fjsp_sub_v2r8(iz1,jz0);
201             dx20             = _fjsp_sub_v2r8(ix2,jx0);
202             dy20             = _fjsp_sub_v2r8(iy2,jy0);
203             dz20             = _fjsp_sub_v2r8(iz2,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
207             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
208             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
209
210             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
211             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
212             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
213
214             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
215             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
216             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222
223             fjx0             = _fjsp_setzero_v2r8();
224             fjy0             = _fjsp_setzero_v2r8();
225             fjz0             = _fjsp_setzero_v2r8();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
232
233             /* Compute parameters for interactions between i and j atoms */
234             qq00             = _fjsp_mul_v2r8(iq0,jq0);
235             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
237
238             /* Calculate table index by multiplying r with table scale and truncate to integer */
239             rt               = _fjsp_mul_v2r8(r00,vftabscale);
240             itab_tmp         = _fjsp_dtox_v2r8(rt);
241             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
242             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
243             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
244
245             vfconv.i[0]     *= 8;
246             vfconv.i[1]     *= 8;
247
248             /* EWALD ELECTROSTATICS */
249
250             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
251             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
252             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
253             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
254             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
255
256             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
257             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
258             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
259             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
260             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
261             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
262             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
263             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
264             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
265             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
266
267             /* CUBIC SPLINE TABLE DISPERSION */
268             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
269             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
270             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
271             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
272             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
273             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
274             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
275             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
276             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
277             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
278             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
279
280             /* CUBIC SPLINE TABLE REPULSION */
281             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
282             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
283             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
284             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
285             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
286             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
287             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
288             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
289             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
290             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
291             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
292             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
293             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _fjsp_add_v2r8(velecsum,velec);
297             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
298
299             fscal            = _fjsp_add_v2r8(felec,fvdw);
300
301             /* Update vectorial force */
302             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
303             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
304             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
305             
306             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
307             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
308             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq10             = _fjsp_mul_v2r8(iq1,jq0);
318
319             /* EWALD ELECTROSTATICS */
320
321             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
322             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
323             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
324             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
325             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
326
327             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
328             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
329             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
330             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
331             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
332             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
333             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
334             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
335             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
336             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _fjsp_add_v2r8(velecsum,velec);
340
341             fscal            = felec;
342
343             /* Update vectorial force */
344             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
345             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
346             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
347             
348             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
349             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
350             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _fjsp_mul_v2r8(iq2,jq0);
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
365             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
366             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
367             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
368
369             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
370             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
371             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
372             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
373             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
374             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
375             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
376             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
377             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
378             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velecsum         = _fjsp_add_v2r8(velecsum,velec);
382
383             fscal            = felec;
384
385             /* Update vectorial force */
386             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
387             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
388             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
389             
390             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
391             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
392             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
393
394             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
395
396             /* Inner loop uses 169 flops */
397         }
398
399         if(jidx<j_index_end)
400         {
401
402             jnrA             = jjnr[jidx];
403             j_coord_offsetA  = DIM*jnrA;
404
405             /* load j atom coordinates */
406             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
407                                               &jx0,&jy0,&jz0);
408
409             /* Calculate displacement vector */
410             dx00             = _fjsp_sub_v2r8(ix0,jx0);
411             dy00             = _fjsp_sub_v2r8(iy0,jy0);
412             dz00             = _fjsp_sub_v2r8(iz0,jz0);
413             dx10             = _fjsp_sub_v2r8(ix1,jx0);
414             dy10             = _fjsp_sub_v2r8(iy1,jy0);
415             dz10             = _fjsp_sub_v2r8(iz1,jz0);
416             dx20             = _fjsp_sub_v2r8(ix2,jx0);
417             dy20             = _fjsp_sub_v2r8(iy2,jy0);
418             dz20             = _fjsp_sub_v2r8(iz2,jz0);
419
420             /* Calculate squared distance and things based on it */
421             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
422             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
423             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
424
425             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
426             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
427             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
428
429             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
430             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
431             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
432
433             /* Load parameters for j particles */
434             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
435             vdwjidx0A        = 2*vdwtype[jnrA+0];
436
437             fjx0             = _fjsp_setzero_v2r8();
438             fjy0             = _fjsp_setzero_v2r8();
439             fjz0             = _fjsp_setzero_v2r8();
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
446
447             /* Compute parameters for interactions between i and j atoms */
448             qq00             = _fjsp_mul_v2r8(iq0,jq0);
449             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
450
451             /* Calculate table index by multiplying r with table scale and truncate to integer */
452             rt               = _fjsp_mul_v2r8(r00,vftabscale);
453             itab_tmp         = _fjsp_dtox_v2r8(rt);
454             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
455             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
456             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
457
458             vfconv.i[0]     *= 8;
459             vfconv.i[1]     *= 8;
460
461             /* EWALD ELECTROSTATICS */
462
463             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
464             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
465             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
466             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
467             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
468
469             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
470             ewtabD           = _fjsp_setzero_v2r8();
471             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
472             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
473             ewtabFn          = _fjsp_setzero_v2r8();
474             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
475             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
476             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
477             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
478             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
479
480             /* CUBIC SPLINE TABLE DISPERSION */
481             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
482             F                = _fjsp_setzero_v2r8();
483             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
484             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
485             H                = _fjsp_setzero_v2r8();
486             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
487             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
488             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
489             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
490             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
491             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
492
493             /* CUBIC SPLINE TABLE REPULSION */
494             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
495             F                = _fjsp_setzero_v2r8();
496             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
497             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
498             H                = _fjsp_setzero_v2r8();
499             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
500             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
501             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
502             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
503             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
504             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
505             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
506             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
510             velecsum         = _fjsp_add_v2r8(velecsum,velec);
511             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
512             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
513
514             fscal            = _fjsp_add_v2r8(felec,fvdw);
515
516             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
517
518             /* Update vectorial force */
519             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
520             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
521             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
522             
523             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
524             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
525             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq10             = _fjsp_mul_v2r8(iq1,jq0);
535
536             /* EWALD ELECTROSTATICS */
537
538             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
539             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
540             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
541             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
542             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
543
544             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
545             ewtabD           = _fjsp_setzero_v2r8();
546             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
547             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
548             ewtabFn          = _fjsp_setzero_v2r8();
549             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
550             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
551             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
552             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
553             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
557             velecsum         = _fjsp_add_v2r8(velecsum,velec);
558
559             fscal            = felec;
560
561             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
562
563             /* Update vectorial force */
564             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
565             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
566             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
567             
568             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
569             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
570             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq20             = _fjsp_mul_v2r8(iq2,jq0);
580
581             /* EWALD ELECTROSTATICS */
582
583             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
584             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
585             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
586             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
587             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
588
589             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
590             ewtabD           = _fjsp_setzero_v2r8();
591             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
592             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
593             ewtabFn          = _fjsp_setzero_v2r8();
594             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
595             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
596             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
597             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
598             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
602             velecsum         = _fjsp_add_v2r8(velecsum,velec);
603
604             fscal            = felec;
605
606             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
607
608             /* Update vectorial force */
609             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
610             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
611             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
612             
613             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
614             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
615             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
616
617             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
618
619             /* Inner loop uses 169 flops */
620         }
621
622         /* End of innermost loop */
623
624         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
625                                               f+i_coord_offset,fshift+i_shift_offset);
626
627         ggid                        = gid[iidx];
628         /* Update potential energies */
629         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
630         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
631
632         /* Increment number of inner iterations */
633         inneriter                  += j_index_end - j_index_start;
634
635         /* Outer loop uses 20 flops */
636     }
637
638     /* Increment number of outer iterations */
639     outeriter        += nri;
640
641     /* Update outer/inner flops */
642
643     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*169);
644 }
645 /*
646  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sparc64_hpc_ace_double
647  * Electrostatics interaction: Ewald
648  * VdW interaction:            CubicSplineTable
649  * Geometry:                   Water3-Particle
650  * Calculate force/pot:        Force
651  */
652 void
653 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sparc64_hpc_ace_double
654                     (t_nblist                    * gmx_restrict       nlist,
655                      rvec                        * gmx_restrict          xx,
656                      rvec                        * gmx_restrict          ff,
657                      t_forcerec                  * gmx_restrict          fr,
658                      t_mdatoms                   * gmx_restrict     mdatoms,
659                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
660                      t_nrnb                      * gmx_restrict        nrnb)
661 {
662     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
663      * just 0 for non-waters.
664      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
665      * jnr indices corresponding to data put in the four positions in the SIMD register.
666      */
667     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
668     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
669     int              jnrA,jnrB;
670     int              j_coord_offsetA,j_coord_offsetB;
671     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
672     real             rcutoff_scalar;
673     real             *shiftvec,*fshift,*x,*f;
674     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
675     int              vdwioffset0;
676     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
677     int              vdwioffset1;
678     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
679     int              vdwioffset2;
680     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
681     int              vdwjidx0A,vdwjidx0B;
682     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
683     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
684     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
685     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
686     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
687     real             *charge;
688     int              nvdwtype;
689     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
690     int              *vdwtype;
691     real             *vdwparam;
692     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
693     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
694     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
695     real             *vftab;
696     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
697     real             *ewtab;
698     _fjsp_v2r8       itab_tmp;
699     _fjsp_v2r8       dummy_mask,cutoff_mask;
700     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
701     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
702     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
703
704     x                = xx[0];
705     f                = ff[0];
706
707     nri              = nlist->nri;
708     iinr             = nlist->iinr;
709     jindex           = nlist->jindex;
710     jjnr             = nlist->jjnr;
711     shiftidx         = nlist->shift;
712     gid              = nlist->gid;
713     shiftvec         = fr->shift_vec[0];
714     fshift           = fr->fshift[0];
715     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
716     charge           = mdatoms->chargeA;
717     nvdwtype         = fr->ntype;
718     vdwparam         = fr->nbfp;
719     vdwtype          = mdatoms->typeA;
720
721     vftab            = kernel_data->table_vdw->data;
722     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
723
724     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
725     ewtab            = fr->ic->tabq_coul_F;
726     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
727     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
728
729     /* Setup water-specific parameters */
730     inr              = nlist->iinr[0];
731     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
732     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
733     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
734     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
735
736     /* Avoid stupid compiler warnings */
737     jnrA = jnrB = 0;
738     j_coord_offsetA = 0;
739     j_coord_offsetB = 0;
740
741     outeriter        = 0;
742     inneriter        = 0;
743
744     /* Start outer loop over neighborlists */
745     for(iidx=0; iidx<nri; iidx++)
746     {
747         /* Load shift vector for this list */
748         i_shift_offset   = DIM*shiftidx[iidx];
749
750         /* Load limits for loop over neighbors */
751         j_index_start    = jindex[iidx];
752         j_index_end      = jindex[iidx+1];
753
754         /* Get outer coordinate index */
755         inr              = iinr[iidx];
756         i_coord_offset   = DIM*inr;
757
758         /* Load i particle coords and add shift vector */
759         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
760                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
761
762         fix0             = _fjsp_setzero_v2r8();
763         fiy0             = _fjsp_setzero_v2r8();
764         fiz0             = _fjsp_setzero_v2r8();
765         fix1             = _fjsp_setzero_v2r8();
766         fiy1             = _fjsp_setzero_v2r8();
767         fiz1             = _fjsp_setzero_v2r8();
768         fix2             = _fjsp_setzero_v2r8();
769         fiy2             = _fjsp_setzero_v2r8();
770         fiz2             = _fjsp_setzero_v2r8();
771
772         /* Start inner kernel loop */
773         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
774         {
775
776             /* Get j neighbor index, and coordinate index */
777             jnrA             = jjnr[jidx];
778             jnrB             = jjnr[jidx+1];
779             j_coord_offsetA  = DIM*jnrA;
780             j_coord_offsetB  = DIM*jnrB;
781
782             /* load j atom coordinates */
783             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
784                                               &jx0,&jy0,&jz0);
785
786             /* Calculate displacement vector */
787             dx00             = _fjsp_sub_v2r8(ix0,jx0);
788             dy00             = _fjsp_sub_v2r8(iy0,jy0);
789             dz00             = _fjsp_sub_v2r8(iz0,jz0);
790             dx10             = _fjsp_sub_v2r8(ix1,jx0);
791             dy10             = _fjsp_sub_v2r8(iy1,jy0);
792             dz10             = _fjsp_sub_v2r8(iz1,jz0);
793             dx20             = _fjsp_sub_v2r8(ix2,jx0);
794             dy20             = _fjsp_sub_v2r8(iy2,jy0);
795             dz20             = _fjsp_sub_v2r8(iz2,jz0);
796
797             /* Calculate squared distance and things based on it */
798             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
799             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
800             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
801
802             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
803             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
804             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
805
806             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
807             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
808             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
809
810             /* Load parameters for j particles */
811             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
812             vdwjidx0A        = 2*vdwtype[jnrA+0];
813             vdwjidx0B        = 2*vdwtype[jnrB+0];
814
815             fjx0             = _fjsp_setzero_v2r8();
816             fjy0             = _fjsp_setzero_v2r8();
817             fjz0             = _fjsp_setzero_v2r8();
818
819             /**************************
820              * CALCULATE INTERACTIONS *
821              **************************/
822
823             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
824
825             /* Compute parameters for interactions between i and j atoms */
826             qq00             = _fjsp_mul_v2r8(iq0,jq0);
827             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
828                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
829
830             /* Calculate table index by multiplying r with table scale and truncate to integer */
831             rt               = _fjsp_mul_v2r8(r00,vftabscale);
832             itab_tmp         = _fjsp_dtox_v2r8(rt);
833             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
834             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
835             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
836
837             vfconv.i[0]     *= 8;
838             vfconv.i[1]     *= 8;
839
840             /* EWALD ELECTROSTATICS */
841
842             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
843             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
844             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
845             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
846             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
847
848             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
849                                          &ewtabF,&ewtabFn);
850             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
851             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
852
853             /* CUBIC SPLINE TABLE DISPERSION */
854             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
855             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
856             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
857             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
858             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
859             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
860             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
861             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
862             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
863
864             /* CUBIC SPLINE TABLE REPULSION */
865             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
866             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
867             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
868             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
869             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
870             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
871             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
872             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
873             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
874             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
875
876             fscal            = _fjsp_add_v2r8(felec,fvdw);
877
878             /* Update vectorial force */
879             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
880             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
881             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
882             
883             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
884             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
885             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
892
893             /* Compute parameters for interactions between i and j atoms */
894             qq10             = _fjsp_mul_v2r8(iq1,jq0);
895
896             /* EWALD ELECTROSTATICS */
897
898             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
899             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
900             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
901             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
902             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
903
904             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
905                                          &ewtabF,&ewtabFn);
906             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
907             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
908
909             fscal            = felec;
910
911             /* Update vectorial force */
912             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
913             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
914             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
915             
916             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
917             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
918             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
925
926             /* Compute parameters for interactions between i and j atoms */
927             qq20             = _fjsp_mul_v2r8(iq2,jq0);
928
929             /* EWALD ELECTROSTATICS */
930
931             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
932             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
933             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
934             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
935             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
936
937             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
938                                          &ewtabF,&ewtabFn);
939             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
940             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
941
942             fscal            = felec;
943
944             /* Update vectorial force */
945             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
946             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
947             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
948             
949             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
950             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
951             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
952
953             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
954
955             /* Inner loop uses 146 flops */
956         }
957
958         if(jidx<j_index_end)
959         {
960
961             jnrA             = jjnr[jidx];
962             j_coord_offsetA  = DIM*jnrA;
963
964             /* load j atom coordinates */
965             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
966                                               &jx0,&jy0,&jz0);
967
968             /* Calculate displacement vector */
969             dx00             = _fjsp_sub_v2r8(ix0,jx0);
970             dy00             = _fjsp_sub_v2r8(iy0,jy0);
971             dz00             = _fjsp_sub_v2r8(iz0,jz0);
972             dx10             = _fjsp_sub_v2r8(ix1,jx0);
973             dy10             = _fjsp_sub_v2r8(iy1,jy0);
974             dz10             = _fjsp_sub_v2r8(iz1,jz0);
975             dx20             = _fjsp_sub_v2r8(ix2,jx0);
976             dy20             = _fjsp_sub_v2r8(iy2,jy0);
977             dz20             = _fjsp_sub_v2r8(iz2,jz0);
978
979             /* Calculate squared distance and things based on it */
980             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
981             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
982             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
983
984             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
985             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
986             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
987
988             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
989             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
990             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
991
992             /* Load parameters for j particles */
993             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
994             vdwjidx0A        = 2*vdwtype[jnrA+0];
995
996             fjx0             = _fjsp_setzero_v2r8();
997             fjy0             = _fjsp_setzero_v2r8();
998             fjz0             = _fjsp_setzero_v2r8();
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1008             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1009
1010             /* Calculate table index by multiplying r with table scale and truncate to integer */
1011             rt               = _fjsp_mul_v2r8(r00,vftabscale);
1012             itab_tmp         = _fjsp_dtox_v2r8(rt);
1013             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
1014             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
1015             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
1016
1017             vfconv.i[0]     *= 8;
1018             vfconv.i[1]     *= 8;
1019
1020             /* EWALD ELECTROSTATICS */
1021
1022             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1023             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1024             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1025             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1026             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1027
1028             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1029             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1030             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1031
1032             /* CUBIC SPLINE TABLE DISPERSION */
1033             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
1034             F                = _fjsp_setzero_v2r8();
1035             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1036             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
1037             H                = _fjsp_setzero_v2r8();
1038             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1039             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1040             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1041             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
1042
1043             /* CUBIC SPLINE TABLE REPULSION */
1044             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
1045             F                = _fjsp_setzero_v2r8();
1046             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1047             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
1048             H                = _fjsp_setzero_v2r8();
1049             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1050             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1051             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1052             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
1053             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
1054
1055             fscal            = _fjsp_add_v2r8(felec,fvdw);
1056
1057             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1058
1059             /* Update vectorial force */
1060             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1061             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1062             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1063             
1064             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1065             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1066             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1073
1074             /* Compute parameters for interactions between i and j atoms */
1075             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1076
1077             /* EWALD ELECTROSTATICS */
1078
1079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1080             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1081             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1082             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1083             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1084
1085             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1086             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1087             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1088
1089             fscal            = felec;
1090
1091             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1092
1093             /* Update vectorial force */
1094             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1095             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1096             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1097             
1098             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1099             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1100             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1107
1108             /* Compute parameters for interactions between i and j atoms */
1109             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1110
1111             /* EWALD ELECTROSTATICS */
1112
1113             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1114             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1115             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1116             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1117             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1118
1119             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1120             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1121             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1122
1123             fscal            = felec;
1124
1125             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1126
1127             /* Update vectorial force */
1128             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1129             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1130             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1131             
1132             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1133             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1134             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1135
1136             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1137
1138             /* Inner loop uses 146 flops */
1139         }
1140
1141         /* End of innermost loop */
1142
1143         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1144                                               f+i_coord_offset,fshift+i_shift_offset);
1145
1146         /* Increment number of inner iterations */
1147         inneriter                  += j_index_end - j_index_start;
1148
1149         /* Outer loop uses 18 flops */
1150     }
1151
1152     /* Increment number of outer iterations */
1153     outeriter        += nri;
1154
1155     /* Update outer/inner flops */
1156
1157     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1158 }