Add C++ version of t_ilist
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
93     real             *vftab;
94     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     _fjsp_v2r8       itab_tmp;
97     _fjsp_v2r8       dummy_mask,cutoff_mask;
98     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
99     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
100     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
101
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
121
122     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
125     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _fjsp_setzero_v2r8();
153         fiy0             = _fjsp_setzero_v2r8();
154         fiz0             = _fjsp_setzero_v2r8();
155
156         /* Load parameters for i particles */
157         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         velecsum         = _fjsp_setzero_v2r8();
162         vvdwsum          = _fjsp_setzero_v2r8();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173
174             /* load j atom coordinates */
175             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _fjsp_sub_v2r8(ix0,jx0);
180             dy00             = _fjsp_sub_v2r8(iy0,jy0);
181             dz00             = _fjsp_sub_v2r8(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
185
186             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
187
188             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
189
190             /* Load parameters for j particles */
191             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
192             vdwjidx0A        = 2*vdwtype[jnrA+0];
193             vdwjidx0B        = 2*vdwtype[jnrB+0];
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
200
201             /* Compute parameters for interactions between i and j atoms */
202             qq00             = _fjsp_mul_v2r8(iq0,jq0);
203             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
204                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
205
206             /* Calculate table index by multiplying r with table scale and truncate to integer */
207             rt               = _fjsp_mul_v2r8(r00,vftabscale);
208             itab_tmp         = _fjsp_dtox_v2r8(rt);
209             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
210             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
211             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
212
213             vfconv.i[0]     *= 8;
214             vfconv.i[1]     *= 8;
215
216             /* EWALD ELECTROSTATICS */
217
218             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
219             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
220             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
221             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
222             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
223
224             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
225             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
226             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
227             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
228             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
229             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
230             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
231             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
232             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
233             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
234
235             /* CUBIC SPLINE TABLE DISPERSION */
236             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
237             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
238             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
239             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
240             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
241             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
242             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
243             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
244             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
245             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
246             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
247
248             /* CUBIC SPLINE TABLE REPULSION */
249             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
250             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
251             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
252             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
253             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
254             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
255             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
256             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
257             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
258             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
259             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
260             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
261             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velecsum         = _fjsp_add_v2r8(velecsum,velec);
265             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
266
267             fscal            = _fjsp_add_v2r8(felec,fvdw);
268
269             /* Update vectorial force */
270             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
271             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
272             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
273             
274             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
275
276             /* Inner loop uses 78 flops */
277         }
278
279         if(jidx<j_index_end)
280         {
281
282             jnrA             = jjnr[jidx];
283             j_coord_offsetA  = DIM*jnrA;
284
285             /* load j atom coordinates */
286             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
287                                               &jx0,&jy0,&jz0);
288
289             /* Calculate displacement vector */
290             dx00             = _fjsp_sub_v2r8(ix0,jx0);
291             dy00             = _fjsp_sub_v2r8(iy0,jy0);
292             dz00             = _fjsp_sub_v2r8(iz0,jz0);
293
294             /* Calculate squared distance and things based on it */
295             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
296
297             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
298
299             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
300
301             /* Load parameters for j particles */
302             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
303             vdwjidx0A        = 2*vdwtype[jnrA+0];
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
310
311             /* Compute parameters for interactions between i and j atoms */
312             qq00             = _fjsp_mul_v2r8(iq0,jq0);
313             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
314                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
315
316             /* Calculate table index by multiplying r with table scale and truncate to integer */
317             rt               = _fjsp_mul_v2r8(r00,vftabscale);
318             itab_tmp         = _fjsp_dtox_v2r8(rt);
319             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
320             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
321             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
322
323             vfconv.i[0]     *= 8;
324             vfconv.i[1]     *= 8;
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
330             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
331             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
332             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
333
334             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
335             ewtabD           = _fjsp_setzero_v2r8();
336             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
337             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
338             ewtabFn          = _fjsp_setzero_v2r8();
339             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
340             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
341             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
342             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
343             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
344
345             /* CUBIC SPLINE TABLE DISPERSION */
346             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
347             F                = _fjsp_setzero_v2r8();
348             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
349             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
350             H                = _fjsp_setzero_v2r8();
351             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
352             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
353             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
354             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
355             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
356             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
357
358             /* CUBIC SPLINE TABLE REPULSION */
359             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
360             F                = _fjsp_setzero_v2r8();
361             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
362             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
363             H                = _fjsp_setzero_v2r8();
364             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
365             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
366             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
367             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
368             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
369             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
370             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
371             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
375             velecsum         = _fjsp_add_v2r8(velecsum,velec);
376             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
377             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
378
379             fscal            = _fjsp_add_v2r8(felec,fvdw);
380
381             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
382
383             /* Update vectorial force */
384             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
385             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
386             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
387             
388             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
389
390             /* Inner loop uses 78 flops */
391         }
392
393         /* End of innermost loop */
394
395         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
396                                               f+i_coord_offset,fshift+i_shift_offset);
397
398         ggid                        = gid[iidx];
399         /* Update potential energies */
400         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
401         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
402
403         /* Increment number of inner iterations */
404         inneriter                  += j_index_end - j_index_start;
405
406         /* Outer loop uses 9 flops */
407     }
408
409     /* Increment number of outer iterations */
410     outeriter        += nri;
411
412     /* Update outer/inner flops */
413
414     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*78);
415 }
416 /*
417  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
418  * Electrostatics interaction: Ewald
419  * VdW interaction:            CubicSplineTable
420  * Geometry:                   Particle-Particle
421  * Calculate force/pot:        Force
422  */
423 void
424 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
425                     (t_nblist                    * gmx_restrict       nlist,
426                      rvec                        * gmx_restrict          xx,
427                      rvec                        * gmx_restrict          ff,
428                      struct t_forcerec           * gmx_restrict          fr,
429                      t_mdatoms                   * gmx_restrict     mdatoms,
430                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
431                      t_nrnb                      * gmx_restrict        nrnb)
432 {
433     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
434      * just 0 for non-waters.
435      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
436      * jnr indices corresponding to data put in the four positions in the SIMD register.
437      */
438     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
439     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
440     int              jnrA,jnrB;
441     int              j_coord_offsetA,j_coord_offsetB;
442     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
443     real             rcutoff_scalar;
444     real             *shiftvec,*fshift,*x,*f;
445     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
446     int              vdwioffset0;
447     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
448     int              vdwjidx0A,vdwjidx0B;
449     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
450     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
451     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
452     real             *charge;
453     int              nvdwtype;
454     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
455     int              *vdwtype;
456     real             *vdwparam;
457     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
458     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
459     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
460     real             *vftab;
461     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
462     real             *ewtab;
463     _fjsp_v2r8       itab_tmp;
464     _fjsp_v2r8       dummy_mask,cutoff_mask;
465     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
466     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
467     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
468
469     x                = xx[0];
470     f                = ff[0];
471
472     nri              = nlist->nri;
473     iinr             = nlist->iinr;
474     jindex           = nlist->jindex;
475     jjnr             = nlist->jjnr;
476     shiftidx         = nlist->shift;
477     gid              = nlist->gid;
478     shiftvec         = fr->shift_vec[0];
479     fshift           = fr->fshift[0];
480     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
481     charge           = mdatoms->chargeA;
482     nvdwtype         = fr->ntype;
483     vdwparam         = fr->nbfp;
484     vdwtype          = mdatoms->typeA;
485
486     vftab            = kernel_data->table_vdw->data;
487     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
488
489     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
490     ewtab            = fr->ic->tabq_coul_F;
491     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
492     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
493
494     /* Avoid stupid compiler warnings */
495     jnrA = jnrB = 0;
496     j_coord_offsetA = 0;
497     j_coord_offsetB = 0;
498
499     outeriter        = 0;
500     inneriter        = 0;
501
502     /* Start outer loop over neighborlists */
503     for(iidx=0; iidx<nri; iidx++)
504     {
505         /* Load shift vector for this list */
506         i_shift_offset   = DIM*shiftidx[iidx];
507
508         /* Load limits for loop over neighbors */
509         j_index_start    = jindex[iidx];
510         j_index_end      = jindex[iidx+1];
511
512         /* Get outer coordinate index */
513         inr              = iinr[iidx];
514         i_coord_offset   = DIM*inr;
515
516         /* Load i particle coords and add shift vector */
517         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
518
519         fix0             = _fjsp_setzero_v2r8();
520         fiy0             = _fjsp_setzero_v2r8();
521         fiz0             = _fjsp_setzero_v2r8();
522
523         /* Load parameters for i particles */
524         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
525         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
526
527         /* Start inner kernel loop */
528         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
529         {
530
531             /* Get j neighbor index, and coordinate index */
532             jnrA             = jjnr[jidx];
533             jnrB             = jjnr[jidx+1];
534             j_coord_offsetA  = DIM*jnrA;
535             j_coord_offsetB  = DIM*jnrB;
536
537             /* load j atom coordinates */
538             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
539                                               &jx0,&jy0,&jz0);
540
541             /* Calculate displacement vector */
542             dx00             = _fjsp_sub_v2r8(ix0,jx0);
543             dy00             = _fjsp_sub_v2r8(iy0,jy0);
544             dz00             = _fjsp_sub_v2r8(iz0,jz0);
545
546             /* Calculate squared distance and things based on it */
547             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
548
549             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
550
551             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
552
553             /* Load parameters for j particles */
554             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
555             vdwjidx0A        = 2*vdwtype[jnrA+0];
556             vdwjidx0B        = 2*vdwtype[jnrB+0];
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq00             = _fjsp_mul_v2r8(iq0,jq0);
566             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
567                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
568
569             /* Calculate table index by multiplying r with table scale and truncate to integer */
570             rt               = _fjsp_mul_v2r8(r00,vftabscale);
571             itab_tmp         = _fjsp_dtox_v2r8(rt);
572             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
573             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
574             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
575
576             vfconv.i[0]     *= 8;
577             vfconv.i[1]     *= 8;
578
579             /* EWALD ELECTROSTATICS */
580
581             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
582             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
583             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
584             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
585             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
586
587             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
588                                          &ewtabF,&ewtabFn);
589             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
590             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
591
592             /* CUBIC SPLINE TABLE DISPERSION */
593             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
594             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
595             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
596             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
597             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
598             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
599             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
600             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
601             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
602
603             /* CUBIC SPLINE TABLE REPULSION */
604             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
605             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
606             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
607             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
608             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
609             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
610             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
611             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
612             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
613             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
614
615             fscal            = _fjsp_add_v2r8(felec,fvdw);
616
617             /* Update vectorial force */
618             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
619             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
620             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
621             
622             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
623
624             /* Inner loop uses 65 flops */
625         }
626
627         if(jidx<j_index_end)
628         {
629
630             jnrA             = jjnr[jidx];
631             j_coord_offsetA  = DIM*jnrA;
632
633             /* load j atom coordinates */
634             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
635                                               &jx0,&jy0,&jz0);
636
637             /* Calculate displacement vector */
638             dx00             = _fjsp_sub_v2r8(ix0,jx0);
639             dy00             = _fjsp_sub_v2r8(iy0,jy0);
640             dz00             = _fjsp_sub_v2r8(iz0,jz0);
641
642             /* Calculate squared distance and things based on it */
643             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
644
645             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
646
647             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
648
649             /* Load parameters for j particles */
650             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
651             vdwjidx0A        = 2*vdwtype[jnrA+0];
652
653             /**************************
654              * CALCULATE INTERACTIONS *
655              **************************/
656
657             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq00             = _fjsp_mul_v2r8(iq0,jq0);
661             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
662                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
663
664             /* Calculate table index by multiplying r with table scale and truncate to integer */
665             rt               = _fjsp_mul_v2r8(r00,vftabscale);
666             itab_tmp         = _fjsp_dtox_v2r8(rt);
667             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
668             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
669             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
670
671             vfconv.i[0]     *= 8;
672             vfconv.i[1]     *= 8;
673
674             /* EWALD ELECTROSTATICS */
675
676             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
677             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
678             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
679             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
680             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
681
682             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
683             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
684             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
685
686             /* CUBIC SPLINE TABLE DISPERSION */
687             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
688             F                = _fjsp_setzero_v2r8();
689             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
690             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
691             H                = _fjsp_setzero_v2r8();
692             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
693             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
694             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
695             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
696
697             /* CUBIC SPLINE TABLE REPULSION */
698             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
699             F                = _fjsp_setzero_v2r8();
700             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
701             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
702             H                = _fjsp_setzero_v2r8();
703             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
704             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
705             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
706             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
707             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
708
709             fscal            = _fjsp_add_v2r8(felec,fvdw);
710
711             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
712
713             /* Update vectorial force */
714             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
715             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
716             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
717             
718             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
719
720             /* Inner loop uses 65 flops */
721         }
722
723         /* End of innermost loop */
724
725         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
726                                               f+i_coord_offset,fshift+i_shift_offset);
727
728         /* Increment number of inner iterations */
729         inneriter                  += j_index_end - j_index_start;
730
731         /* Outer loop uses 7 flops */
732     }
733
734     /* Increment number of outer iterations */
735     outeriter        += nri;
736
737     /* Update outer/inner flops */
738
739     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
740 }