399679d959d0149e6f76d402c03e5728fe214663
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            CubicSplineTable
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
93     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
94     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
95     real             *vftab;
96     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     _fjsp_v2r8       itab_tmp;
99     _fjsp_v2r8       dummy_mask,cutoff_mask;
100     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
101     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
102     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
103
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
123
124     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
127     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _fjsp_setzero_v2r8();
155         fiy0             = _fjsp_setzero_v2r8();
156         fiz0             = _fjsp_setzero_v2r8();
157
158         /* Load parameters for i particles */
159         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _fjsp_setzero_v2r8();
164         vvdwsum          = _fjsp_setzero_v2r8();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _fjsp_sub_v2r8(ix0,jx0);
182             dy00             = _fjsp_sub_v2r8(iy0,jy0);
183             dz00             = _fjsp_sub_v2r8(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
187
188             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
189
190             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196
197             /**************************
198              * CALCULATE INTERACTIONS *
199              **************************/
200
201             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
202
203             /* Compute parameters for interactions between i and j atoms */
204             qq00             = _fjsp_mul_v2r8(iq0,jq0);
205             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
206                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
207
208             /* Calculate table index by multiplying r with table scale and truncate to integer */
209             rt               = _fjsp_mul_v2r8(r00,vftabscale);
210             itab_tmp         = _fjsp_dtox_v2r8(rt);
211             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
212             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
213             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
214
215             vfconv.i[0]     *= 8;
216             vfconv.i[1]     *= 8;
217
218             /* EWALD ELECTROSTATICS */
219
220             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
221             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
222             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
223             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
224             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
225
226             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
227             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
228             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
229             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
230             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
231             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
232             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
233             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
234             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
235             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
236
237             /* CUBIC SPLINE TABLE DISPERSION */
238             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
239             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
240             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
241             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
242             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
243             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
244             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
245             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
246             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
247             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
248             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
249
250             /* CUBIC SPLINE TABLE REPULSION */
251             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
252             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
253             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
254             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
255             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
256             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
257             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
258             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
259             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
260             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
261             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
262             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
263             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velecsum         = _fjsp_add_v2r8(velecsum,velec);
267             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
268
269             fscal            = _fjsp_add_v2r8(felec,fvdw);
270
271             /* Update vectorial force */
272             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
273             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
274             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
275             
276             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
277
278             /* Inner loop uses 78 flops */
279         }
280
281         if(jidx<j_index_end)
282         {
283
284             jnrA             = jjnr[jidx];
285             j_coord_offsetA  = DIM*jnrA;
286
287             /* load j atom coordinates */
288             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
289                                               &jx0,&jy0,&jz0);
290
291             /* Calculate displacement vector */
292             dx00             = _fjsp_sub_v2r8(ix0,jx0);
293             dy00             = _fjsp_sub_v2r8(iy0,jy0);
294             dz00             = _fjsp_sub_v2r8(iz0,jz0);
295
296             /* Calculate squared distance and things based on it */
297             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
298
299             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
300
301             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
302
303             /* Load parameters for j particles */
304             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
305             vdwjidx0A        = 2*vdwtype[jnrA+0];
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq00             = _fjsp_mul_v2r8(iq0,jq0);
315             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
316
317             /* Calculate table index by multiplying r with table scale and truncate to integer */
318             rt               = _fjsp_mul_v2r8(r00,vftabscale);
319             itab_tmp         = _fjsp_dtox_v2r8(rt);
320             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
321             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
322             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
323
324             vfconv.i[0]     *= 8;
325             vfconv.i[1]     *= 8;
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
331             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
332             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
333             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
334
335             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
336             ewtabD           = _fjsp_setzero_v2r8();
337             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
338             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
339             ewtabFn          = _fjsp_setzero_v2r8();
340             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
341             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
342             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
343             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
344             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
345
346             /* CUBIC SPLINE TABLE DISPERSION */
347             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
348             F                = _fjsp_setzero_v2r8();
349             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
350             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
351             H                = _fjsp_setzero_v2r8();
352             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
353             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
354             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
355             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
356             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
357             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
358
359             /* CUBIC SPLINE TABLE REPULSION */
360             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
361             F                = _fjsp_setzero_v2r8();
362             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
363             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
364             H                = _fjsp_setzero_v2r8();
365             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
366             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
367             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
368             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
369             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
370             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
371             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
372             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
376             velecsum         = _fjsp_add_v2r8(velecsum,velec);
377             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
378             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
379
380             fscal            = _fjsp_add_v2r8(felec,fvdw);
381
382             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
383
384             /* Update vectorial force */
385             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
386             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
387             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
388             
389             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
390
391             /* Inner loop uses 78 flops */
392         }
393
394         /* End of innermost loop */
395
396         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
397                                               f+i_coord_offset,fshift+i_shift_offset);
398
399         ggid                        = gid[iidx];
400         /* Update potential energies */
401         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
402         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
403
404         /* Increment number of inner iterations */
405         inneriter                  += j_index_end - j_index_start;
406
407         /* Outer loop uses 9 flops */
408     }
409
410     /* Increment number of outer iterations */
411     outeriter        += nri;
412
413     /* Update outer/inner flops */
414
415     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*78);
416 }
417 /*
418  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
419  * Electrostatics interaction: Ewald
420  * VdW interaction:            CubicSplineTable
421  * Geometry:                   Particle-Particle
422  * Calculate force/pot:        Force
423  */
424 void
425 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
426                     (t_nblist                    * gmx_restrict       nlist,
427                      rvec                        * gmx_restrict          xx,
428                      rvec                        * gmx_restrict          ff,
429                      t_forcerec                  * gmx_restrict          fr,
430                      t_mdatoms                   * gmx_restrict     mdatoms,
431                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
432                      t_nrnb                      * gmx_restrict        nrnb)
433 {
434     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
435      * just 0 for non-waters.
436      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
437      * jnr indices corresponding to data put in the four positions in the SIMD register.
438      */
439     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
440     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
441     int              jnrA,jnrB;
442     int              j_coord_offsetA,j_coord_offsetB;
443     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
444     real             rcutoff_scalar;
445     real             *shiftvec,*fshift,*x,*f;
446     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
447     int              vdwioffset0;
448     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
449     int              vdwjidx0A,vdwjidx0B;
450     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
451     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
452     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
453     real             *charge;
454     int              nvdwtype;
455     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
456     int              *vdwtype;
457     real             *vdwparam;
458     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
459     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
460     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
461     real             *vftab;
462     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
463     real             *ewtab;
464     _fjsp_v2r8       itab_tmp;
465     _fjsp_v2r8       dummy_mask,cutoff_mask;
466     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
467     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
468     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
469
470     x                = xx[0];
471     f                = ff[0];
472
473     nri              = nlist->nri;
474     iinr             = nlist->iinr;
475     jindex           = nlist->jindex;
476     jjnr             = nlist->jjnr;
477     shiftidx         = nlist->shift;
478     gid              = nlist->gid;
479     shiftvec         = fr->shift_vec[0];
480     fshift           = fr->fshift[0];
481     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
482     charge           = mdatoms->chargeA;
483     nvdwtype         = fr->ntype;
484     vdwparam         = fr->nbfp;
485     vdwtype          = mdatoms->typeA;
486
487     vftab            = kernel_data->table_vdw->data;
488     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
489
490     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
491     ewtab            = fr->ic->tabq_coul_F;
492     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
493     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
494
495     /* Avoid stupid compiler warnings */
496     jnrA = jnrB = 0;
497     j_coord_offsetA = 0;
498     j_coord_offsetB = 0;
499
500     outeriter        = 0;
501     inneriter        = 0;
502
503     /* Start outer loop over neighborlists */
504     for(iidx=0; iidx<nri; iidx++)
505     {
506         /* Load shift vector for this list */
507         i_shift_offset   = DIM*shiftidx[iidx];
508
509         /* Load limits for loop over neighbors */
510         j_index_start    = jindex[iidx];
511         j_index_end      = jindex[iidx+1];
512
513         /* Get outer coordinate index */
514         inr              = iinr[iidx];
515         i_coord_offset   = DIM*inr;
516
517         /* Load i particle coords and add shift vector */
518         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
519
520         fix0             = _fjsp_setzero_v2r8();
521         fiy0             = _fjsp_setzero_v2r8();
522         fiz0             = _fjsp_setzero_v2r8();
523
524         /* Load parameters for i particles */
525         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
526         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
527
528         /* Start inner kernel loop */
529         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
530         {
531
532             /* Get j neighbor index, and coordinate index */
533             jnrA             = jjnr[jidx];
534             jnrB             = jjnr[jidx+1];
535             j_coord_offsetA  = DIM*jnrA;
536             j_coord_offsetB  = DIM*jnrB;
537
538             /* load j atom coordinates */
539             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
540                                               &jx0,&jy0,&jz0);
541
542             /* Calculate displacement vector */
543             dx00             = _fjsp_sub_v2r8(ix0,jx0);
544             dy00             = _fjsp_sub_v2r8(iy0,jy0);
545             dz00             = _fjsp_sub_v2r8(iz0,jz0);
546
547             /* Calculate squared distance and things based on it */
548             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
549
550             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
551
552             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
553
554             /* Load parameters for j particles */
555             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
556             vdwjidx0A        = 2*vdwtype[jnrA+0];
557             vdwjidx0B        = 2*vdwtype[jnrB+0];
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq00             = _fjsp_mul_v2r8(iq0,jq0);
567             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
568                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
569
570             /* Calculate table index by multiplying r with table scale and truncate to integer */
571             rt               = _fjsp_mul_v2r8(r00,vftabscale);
572             itab_tmp         = _fjsp_dtox_v2r8(rt);
573             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
574             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
575             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
576
577             vfconv.i[0]     *= 8;
578             vfconv.i[1]     *= 8;
579
580             /* EWALD ELECTROSTATICS */
581
582             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
583             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
584             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
585             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
586             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
587
588             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
589                                          &ewtabF,&ewtabFn);
590             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
591             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
592
593             /* CUBIC SPLINE TABLE DISPERSION */
594             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
595             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
596             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
597             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
598             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
599             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
600             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
601             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
602             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
603
604             /* CUBIC SPLINE TABLE REPULSION */
605             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
606             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
607             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
608             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
609             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
610             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
611             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
612             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
613             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
614             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
615
616             fscal            = _fjsp_add_v2r8(felec,fvdw);
617
618             /* Update vectorial force */
619             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
620             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
621             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
622             
623             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
624
625             /* Inner loop uses 65 flops */
626         }
627
628         if(jidx<j_index_end)
629         {
630
631             jnrA             = jjnr[jidx];
632             j_coord_offsetA  = DIM*jnrA;
633
634             /* load j atom coordinates */
635             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
636                                               &jx0,&jy0,&jz0);
637
638             /* Calculate displacement vector */
639             dx00             = _fjsp_sub_v2r8(ix0,jx0);
640             dy00             = _fjsp_sub_v2r8(iy0,jy0);
641             dz00             = _fjsp_sub_v2r8(iz0,jz0);
642
643             /* Calculate squared distance and things based on it */
644             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
645
646             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
647
648             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
649
650             /* Load parameters for j particles */
651             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
652             vdwjidx0A        = 2*vdwtype[jnrA+0];
653
654             /**************************
655              * CALCULATE INTERACTIONS *
656              **************************/
657
658             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
659
660             /* Compute parameters for interactions between i and j atoms */
661             qq00             = _fjsp_mul_v2r8(iq0,jq0);
662             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
663
664             /* Calculate table index by multiplying r with table scale and truncate to integer */
665             rt               = _fjsp_mul_v2r8(r00,vftabscale);
666             itab_tmp         = _fjsp_dtox_v2r8(rt);
667             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
668             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
669             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
670
671             vfconv.i[0]     *= 8;
672             vfconv.i[1]     *= 8;
673
674             /* EWALD ELECTROSTATICS */
675
676             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
677             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
678             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
679             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
680             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
681
682             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
683             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
684             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
685
686             /* CUBIC SPLINE TABLE DISPERSION */
687             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
688             F                = _fjsp_setzero_v2r8();
689             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
690             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
691             H                = _fjsp_setzero_v2r8();
692             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
693             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
694             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
695             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
696
697             /* CUBIC SPLINE TABLE REPULSION */
698             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
699             F                = _fjsp_setzero_v2r8();
700             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
701             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
702             H                = _fjsp_setzero_v2r8();
703             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
704             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
705             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
706             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
707             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
708
709             fscal            = _fjsp_add_v2r8(felec,fvdw);
710
711             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
712
713             /* Update vectorial force */
714             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
715             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
716             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
717             
718             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
719
720             /* Inner loop uses 65 flops */
721         }
722
723         /* End of innermost loop */
724
725         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
726                                               f+i_coord_offset,fshift+i_shift_offset);
727
728         /* Increment number of inner iterations */
729         inneriter                  += j_index_end - j_index_start;
730
731         /* Outer loop uses 7 flops */
732     }
733
734     /* Increment number of outer iterations */
735     outeriter        += nri;
736
737     /* Update outer/inner flops */
738
739     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
740 }