Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     real             *ewtab;
94     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
95     real             rswitch_scalar,d_scalar;
96     _fjsp_v2r8       itab_tmp;
97     _fjsp_v2r8       dummy_mask,cutoff_mask;
98     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
99     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
100     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
101
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
119     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
124     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
125     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
130     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
131
132     rswitch_scalar   = fr->rcoulomb_switch;
133     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
134     /* Setup switch parameters */
135     d_scalar         = rcutoff_scalar-rswitch_scalar;
136     d                = gmx_fjsp_set1_v2r8(d_scalar);
137     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
138     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
141     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _fjsp_setzero_v2r8();
171         fiy0             = _fjsp_setzero_v2r8();
172         fiz0             = _fjsp_setzero_v2r8();
173         fix1             = _fjsp_setzero_v2r8();
174         fiy1             = _fjsp_setzero_v2r8();
175         fiz1             = _fjsp_setzero_v2r8();
176         fix2             = _fjsp_setzero_v2r8();
177         fiy2             = _fjsp_setzero_v2r8();
178         fiz2             = _fjsp_setzero_v2r8();
179
180         /* Reset potential sums */
181         velecsum         = _fjsp_setzero_v2r8();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _fjsp_sub_v2r8(ix0,jx0);
199             dy00             = _fjsp_sub_v2r8(iy0,jy0);
200             dz00             = _fjsp_sub_v2r8(iz0,jz0);
201             dx10             = _fjsp_sub_v2r8(ix1,jx0);
202             dy10             = _fjsp_sub_v2r8(iy1,jy0);
203             dz10             = _fjsp_sub_v2r8(iz1,jz0);
204             dx20             = _fjsp_sub_v2r8(ix2,jx0);
205             dy20             = _fjsp_sub_v2r8(iy2,jy0);
206             dz20             = _fjsp_sub_v2r8(iz2,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
210             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
211             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
212
213             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
214             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
215             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
216
217             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
218             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
219             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
223
224             fjx0             = _fjsp_setzero_v2r8();
225             fjy0             = _fjsp_setzero_v2r8();
226             fjz0             = _fjsp_setzero_v2r8();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
233             {
234
235             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq00             = _fjsp_mul_v2r8(iq0,jq0);
239
240             /* EWALD ELECTROSTATICS */
241
242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
243             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
244             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
245             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
246             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
247
248             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
249             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
250             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
251             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
252             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
253             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
254             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
255             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
256             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
257             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
258
259             d                = _fjsp_sub_v2r8(r00,rswitch);
260             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
261             d2               = _fjsp_mul_v2r8(d,d);
262             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
263
264             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
265
266             /* Evaluate switch function */
267             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
268             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
269             velec            = _fjsp_mul_v2r8(velec,sw);
270             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
274             velecsum         = _fjsp_add_v2r8(velecsum,velec);
275
276             fscal            = felec;
277
278             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
279
280             /* Update vectorial force */
281             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
282             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
283             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
284             
285             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
286             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
287             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
288
289             }
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
296             {
297
298             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq10             = _fjsp_mul_v2r8(iq1,jq0);
302
303             /* EWALD ELECTROSTATICS */
304
305             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
306             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
307             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
308             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
309             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
310
311             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
312             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
313             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
314             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
315             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
316             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
317             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
318             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
319             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
320             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
321
322             d                = _fjsp_sub_v2r8(r10,rswitch);
323             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
324             d2               = _fjsp_mul_v2r8(d,d);
325             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
326
327             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
328
329             /* Evaluate switch function */
330             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
331             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
332             velec            = _fjsp_mul_v2r8(velec,sw);
333             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
337             velecsum         = _fjsp_add_v2r8(velecsum,velec);
338
339             fscal            = felec;
340
341             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
342
343             /* Update vectorial force */
344             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
345             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
346             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
347             
348             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
349             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
350             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
351
352             }
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
359             {
360
361             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq20             = _fjsp_mul_v2r8(iq2,jq0);
365
366             /* EWALD ELECTROSTATICS */
367
368             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
369             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
370             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
371             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
372             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
373
374             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
375             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
376             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
377             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
378             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
379             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
380             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
381             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
382             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
383             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
384
385             d                = _fjsp_sub_v2r8(r20,rswitch);
386             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
387             d2               = _fjsp_mul_v2r8(d,d);
388             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
389
390             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
391
392             /* Evaluate switch function */
393             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
394             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
395             velec            = _fjsp_mul_v2r8(velec,sw);
396             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
400             velecsum         = _fjsp_add_v2r8(velecsum,velec);
401
402             fscal            = felec;
403
404             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
405
406             /* Update vectorial force */
407             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
408             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
409             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
410             
411             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
412             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
413             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
414
415             }
416
417             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
418
419             /* Inner loop uses 207 flops */
420         }
421
422         if(jidx<j_index_end)
423         {
424
425             jnrA             = jjnr[jidx];
426             j_coord_offsetA  = DIM*jnrA;
427
428             /* load j atom coordinates */
429             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
430                                               &jx0,&jy0,&jz0);
431
432             /* Calculate displacement vector */
433             dx00             = _fjsp_sub_v2r8(ix0,jx0);
434             dy00             = _fjsp_sub_v2r8(iy0,jy0);
435             dz00             = _fjsp_sub_v2r8(iz0,jz0);
436             dx10             = _fjsp_sub_v2r8(ix1,jx0);
437             dy10             = _fjsp_sub_v2r8(iy1,jy0);
438             dz10             = _fjsp_sub_v2r8(iz1,jz0);
439             dx20             = _fjsp_sub_v2r8(ix2,jx0);
440             dy20             = _fjsp_sub_v2r8(iy2,jy0);
441             dz20             = _fjsp_sub_v2r8(iz2,jz0);
442
443             /* Calculate squared distance and things based on it */
444             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
445             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
446             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
447
448             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
449             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
450             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
451
452             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
453             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
454             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
455
456             /* Load parameters for j particles */
457             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
458
459             fjx0             = _fjsp_setzero_v2r8();
460             fjy0             = _fjsp_setzero_v2r8();
461             fjz0             = _fjsp_setzero_v2r8();
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
468             {
469
470             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
471
472             /* Compute parameters for interactions between i and j atoms */
473             qq00             = _fjsp_mul_v2r8(iq0,jq0);
474
475             /* EWALD ELECTROSTATICS */
476
477             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
478             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
479             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
480             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
481             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
482
483             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
484             ewtabD           = _fjsp_setzero_v2r8();
485             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
486             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
487             ewtabFn          = _fjsp_setzero_v2r8();
488             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
489             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
490             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
491             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
492             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
493
494             d                = _fjsp_sub_v2r8(r00,rswitch);
495             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
496             d2               = _fjsp_mul_v2r8(d,d);
497             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
498
499             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
500
501             /* Evaluate switch function */
502             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
503             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
504             velec            = _fjsp_mul_v2r8(velec,sw);
505             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
506
507             /* Update potential sum for this i atom from the interaction with this j atom. */
508             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
509             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
510             velecsum         = _fjsp_add_v2r8(velecsum,velec);
511
512             fscal            = felec;
513
514             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
515
516             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
517
518             /* Update vectorial force */
519             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
520             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
521             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
522             
523             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
524             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
525             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
526
527             }
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
534             {
535
536             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq10             = _fjsp_mul_v2r8(iq1,jq0);
540
541             /* EWALD ELECTROSTATICS */
542
543             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
544             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
545             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
546             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
547             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
548
549             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
550             ewtabD           = _fjsp_setzero_v2r8();
551             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
552             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
553             ewtabFn          = _fjsp_setzero_v2r8();
554             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
555             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
556             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
557             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
558             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
559
560             d                = _fjsp_sub_v2r8(r10,rswitch);
561             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
562             d2               = _fjsp_mul_v2r8(d,d);
563             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
564
565             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
566
567             /* Evaluate switch function */
568             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
569             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
570             velec            = _fjsp_mul_v2r8(velec,sw);
571             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
575             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
576             velecsum         = _fjsp_add_v2r8(velecsum,velec);
577
578             fscal            = felec;
579
580             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
581
582             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
583
584             /* Update vectorial force */
585             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
586             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
587             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
588             
589             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
590             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
591             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
592
593             }
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
600             {
601
602             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq20             = _fjsp_mul_v2r8(iq2,jq0);
606
607             /* EWALD ELECTROSTATICS */
608
609             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
610             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
611             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
612             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
613             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
614
615             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
616             ewtabD           = _fjsp_setzero_v2r8();
617             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
618             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
619             ewtabFn          = _fjsp_setzero_v2r8();
620             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
621             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
622             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
623             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
624             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
625
626             d                = _fjsp_sub_v2r8(r20,rswitch);
627             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
628             d2               = _fjsp_mul_v2r8(d,d);
629             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
630
631             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
632
633             /* Evaluate switch function */
634             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
635             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
636             velec            = _fjsp_mul_v2r8(velec,sw);
637             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
641             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
642             velecsum         = _fjsp_add_v2r8(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
647
648             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
649
650             /* Update vectorial force */
651             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
652             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
653             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
654             
655             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
656             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
657             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
658
659             }
660
661             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
662
663             /* Inner loop uses 207 flops */
664         }
665
666         /* End of innermost loop */
667
668         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
669                                               f+i_coord_offset,fshift+i_shift_offset);
670
671         ggid                        = gid[iidx];
672         /* Update potential energies */
673         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
674
675         /* Increment number of inner iterations */
676         inneriter                  += j_index_end - j_index_start;
677
678         /* Outer loop uses 19 flops */
679     }
680
681     /* Increment number of outer iterations */
682     outeriter        += nri;
683
684     /* Update outer/inner flops */
685
686     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*207);
687 }
688 /*
689  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_sparc64_hpc_ace_double
690  * Electrostatics interaction: Ewald
691  * VdW interaction:            None
692  * Geometry:                   Water3-Particle
693  * Calculate force/pot:        Force
694  */
695 void
696 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_sparc64_hpc_ace_double
697                     (t_nblist                    * gmx_restrict       nlist,
698                      rvec                        * gmx_restrict          xx,
699                      rvec                        * gmx_restrict          ff,
700                      t_forcerec                  * gmx_restrict          fr,
701                      t_mdatoms                   * gmx_restrict     mdatoms,
702                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
703                      t_nrnb                      * gmx_restrict        nrnb)
704 {
705     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
706      * just 0 for non-waters.
707      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
708      * jnr indices corresponding to data put in the four positions in the SIMD register.
709      */
710     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
711     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
712     int              jnrA,jnrB;
713     int              j_coord_offsetA,j_coord_offsetB;
714     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
715     real             rcutoff_scalar;
716     real             *shiftvec,*fshift,*x,*f;
717     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
718     int              vdwioffset0;
719     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
720     int              vdwioffset1;
721     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
722     int              vdwioffset2;
723     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
724     int              vdwjidx0A,vdwjidx0B;
725     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
726     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
727     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
728     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
729     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
730     real             *charge;
731     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
732     real             *ewtab;
733     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
734     real             rswitch_scalar,d_scalar;
735     _fjsp_v2r8       itab_tmp;
736     _fjsp_v2r8       dummy_mask,cutoff_mask;
737     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
738     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
739     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
740
741     x                = xx[0];
742     f                = ff[0];
743
744     nri              = nlist->nri;
745     iinr             = nlist->iinr;
746     jindex           = nlist->jindex;
747     jjnr             = nlist->jjnr;
748     shiftidx         = nlist->shift;
749     gid              = nlist->gid;
750     shiftvec         = fr->shift_vec[0];
751     fshift           = fr->fshift[0];
752     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
753     charge           = mdatoms->chargeA;
754
755     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
756     ewtab            = fr->ic->tabq_coul_FDV0;
757     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
758     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
759
760     /* Setup water-specific parameters */
761     inr              = nlist->iinr[0];
762     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
763     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
764     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
765
766     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
767     rcutoff_scalar   = fr->rcoulomb;
768     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
769     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
770
771     rswitch_scalar   = fr->rcoulomb_switch;
772     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
773     /* Setup switch parameters */
774     d_scalar         = rcutoff_scalar-rswitch_scalar;
775     d                = gmx_fjsp_set1_v2r8(d_scalar);
776     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
777     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
778     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
779     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
780     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
781     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
782
783     /* Avoid stupid compiler warnings */
784     jnrA = jnrB = 0;
785     j_coord_offsetA = 0;
786     j_coord_offsetB = 0;
787
788     outeriter        = 0;
789     inneriter        = 0;
790
791     /* Start outer loop over neighborlists */
792     for(iidx=0; iidx<nri; iidx++)
793     {
794         /* Load shift vector for this list */
795         i_shift_offset   = DIM*shiftidx[iidx];
796
797         /* Load limits for loop over neighbors */
798         j_index_start    = jindex[iidx];
799         j_index_end      = jindex[iidx+1];
800
801         /* Get outer coordinate index */
802         inr              = iinr[iidx];
803         i_coord_offset   = DIM*inr;
804
805         /* Load i particle coords and add shift vector */
806         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
807                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
808
809         fix0             = _fjsp_setzero_v2r8();
810         fiy0             = _fjsp_setzero_v2r8();
811         fiz0             = _fjsp_setzero_v2r8();
812         fix1             = _fjsp_setzero_v2r8();
813         fiy1             = _fjsp_setzero_v2r8();
814         fiz1             = _fjsp_setzero_v2r8();
815         fix2             = _fjsp_setzero_v2r8();
816         fiy2             = _fjsp_setzero_v2r8();
817         fiz2             = _fjsp_setzero_v2r8();
818
819         /* Start inner kernel loop */
820         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
821         {
822
823             /* Get j neighbor index, and coordinate index */
824             jnrA             = jjnr[jidx];
825             jnrB             = jjnr[jidx+1];
826             j_coord_offsetA  = DIM*jnrA;
827             j_coord_offsetB  = DIM*jnrB;
828
829             /* load j atom coordinates */
830             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
831                                               &jx0,&jy0,&jz0);
832
833             /* Calculate displacement vector */
834             dx00             = _fjsp_sub_v2r8(ix0,jx0);
835             dy00             = _fjsp_sub_v2r8(iy0,jy0);
836             dz00             = _fjsp_sub_v2r8(iz0,jz0);
837             dx10             = _fjsp_sub_v2r8(ix1,jx0);
838             dy10             = _fjsp_sub_v2r8(iy1,jy0);
839             dz10             = _fjsp_sub_v2r8(iz1,jz0);
840             dx20             = _fjsp_sub_v2r8(ix2,jx0);
841             dy20             = _fjsp_sub_v2r8(iy2,jy0);
842             dz20             = _fjsp_sub_v2r8(iz2,jz0);
843
844             /* Calculate squared distance and things based on it */
845             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
846             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
847             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
848
849             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
850             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
851             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
852
853             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
854             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
855             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
856
857             /* Load parameters for j particles */
858             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
859
860             fjx0             = _fjsp_setzero_v2r8();
861             fjy0             = _fjsp_setzero_v2r8();
862             fjz0             = _fjsp_setzero_v2r8();
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
869             {
870
871             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
872
873             /* Compute parameters for interactions between i and j atoms */
874             qq00             = _fjsp_mul_v2r8(iq0,jq0);
875
876             /* EWALD ELECTROSTATICS */
877
878             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
879             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
880             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
881             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
882             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
883
884             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
885             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
886             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
887             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
888             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
889             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
890             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
891             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
892             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
893             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
894
895             d                = _fjsp_sub_v2r8(r00,rswitch);
896             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
897             d2               = _fjsp_mul_v2r8(d,d);
898             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
899
900             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
901
902             /* Evaluate switch function */
903             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
904             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
905             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
906
907             fscal            = felec;
908
909             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
910
911             /* Update vectorial force */
912             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
913             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
914             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
915             
916             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
917             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
918             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
919
920             }
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
927             {
928
929             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
930
931             /* Compute parameters for interactions between i and j atoms */
932             qq10             = _fjsp_mul_v2r8(iq1,jq0);
933
934             /* EWALD ELECTROSTATICS */
935
936             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
937             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
938             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
939             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
940             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
941
942             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
943             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
944             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
945             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
946             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
947             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
948             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
949             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
950             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
951             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
952
953             d                = _fjsp_sub_v2r8(r10,rswitch);
954             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
955             d2               = _fjsp_mul_v2r8(d,d);
956             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
957
958             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
959
960             /* Evaluate switch function */
961             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
962             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
963             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
964
965             fscal            = felec;
966
967             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
968
969             /* Update vectorial force */
970             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
971             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
972             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
973             
974             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
975             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
976             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
977
978             }
979
980             /**************************
981              * CALCULATE INTERACTIONS *
982              **************************/
983
984             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
985             {
986
987             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
988
989             /* Compute parameters for interactions between i and j atoms */
990             qq20             = _fjsp_mul_v2r8(iq2,jq0);
991
992             /* EWALD ELECTROSTATICS */
993
994             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
995             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
996             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
997             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
998             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
999
1000             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1001             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
1002             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1003             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1004             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
1005             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1006             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1007             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1008             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1009             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1010
1011             d                = _fjsp_sub_v2r8(r20,rswitch);
1012             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1013             d2               = _fjsp_mul_v2r8(d,d);
1014             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1015
1016             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1017
1018             /* Evaluate switch function */
1019             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1020             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1021             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1022
1023             fscal            = felec;
1024
1025             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1026
1027             /* Update vectorial force */
1028             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1029             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1030             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1031             
1032             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1033             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1034             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1035
1036             }
1037
1038             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1039
1040             /* Inner loop uses 198 flops */
1041         }
1042
1043         if(jidx<j_index_end)
1044         {
1045
1046             jnrA             = jjnr[jidx];
1047             j_coord_offsetA  = DIM*jnrA;
1048
1049             /* load j atom coordinates */
1050             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1051                                               &jx0,&jy0,&jz0);
1052
1053             /* Calculate displacement vector */
1054             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1055             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1056             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1057             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1058             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1059             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1060             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1061             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1062             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1063
1064             /* Calculate squared distance and things based on it */
1065             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1066             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1067             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1068
1069             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1070             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1071             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1072
1073             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1074             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1075             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1076
1077             /* Load parameters for j particles */
1078             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1079
1080             fjx0             = _fjsp_setzero_v2r8();
1081             fjy0             = _fjsp_setzero_v2r8();
1082             fjz0             = _fjsp_setzero_v2r8();
1083
1084             /**************************
1085              * CALCULATE INTERACTIONS *
1086              **************************/
1087
1088             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1089             {
1090
1091             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1092
1093             /* Compute parameters for interactions between i and j atoms */
1094             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1095
1096             /* EWALD ELECTROSTATICS */
1097
1098             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1099             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1100             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1101             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1102             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1103
1104             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1105             ewtabD           = _fjsp_setzero_v2r8();
1106             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1107             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1108             ewtabFn          = _fjsp_setzero_v2r8();
1109             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1110             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1111             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1112             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
1113             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1114
1115             d                = _fjsp_sub_v2r8(r00,rswitch);
1116             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1117             d2               = _fjsp_mul_v2r8(d,d);
1118             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1119
1120             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1121
1122             /* Evaluate switch function */
1123             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1124             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
1125             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1126
1127             fscal            = felec;
1128
1129             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1130
1131             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1132
1133             /* Update vectorial force */
1134             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1135             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1136             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1137             
1138             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1139             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1140             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1141
1142             }
1143
1144             /**************************
1145              * CALCULATE INTERACTIONS *
1146              **************************/
1147
1148             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1149             {
1150
1151             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1152
1153             /* Compute parameters for interactions between i and j atoms */
1154             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1155
1156             /* EWALD ELECTROSTATICS */
1157
1158             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1159             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1160             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1161             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1162             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1163
1164             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1165             ewtabD           = _fjsp_setzero_v2r8();
1166             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1167             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1168             ewtabFn          = _fjsp_setzero_v2r8();
1169             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1170             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1171             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1172             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
1173             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1174
1175             d                = _fjsp_sub_v2r8(r10,rswitch);
1176             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1177             d2               = _fjsp_mul_v2r8(d,d);
1178             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1179
1180             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1181
1182             /* Evaluate switch function */
1183             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1184             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
1185             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1186
1187             fscal            = felec;
1188
1189             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1190
1191             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1192
1193             /* Update vectorial force */
1194             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1195             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1196             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1197             
1198             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1199             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1200             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1201
1202             }
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1209             {
1210
1211             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1212
1213             /* Compute parameters for interactions between i and j atoms */
1214             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1215
1216             /* EWALD ELECTROSTATICS */
1217
1218             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1219             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1220             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1221             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1222             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1223
1224             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1225             ewtabD           = _fjsp_setzero_v2r8();
1226             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1227             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1228             ewtabFn          = _fjsp_setzero_v2r8();
1229             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1230             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1231             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1232             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1233             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1234
1235             d                = _fjsp_sub_v2r8(r20,rswitch);
1236             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1237             d2               = _fjsp_mul_v2r8(d,d);
1238             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1239
1240             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1241
1242             /* Evaluate switch function */
1243             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1244             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1245             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1246
1247             fscal            = felec;
1248
1249             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1250
1251             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1252
1253             /* Update vectorial force */
1254             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1255             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1256             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1257             
1258             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1259             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1260             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1261
1262             }
1263
1264             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1265
1266             /* Inner loop uses 198 flops */
1267         }
1268
1269         /* End of innermost loop */
1270
1271         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1272                                               f+i_coord_offset,fshift+i_shift_offset);
1273
1274         /* Increment number of inner iterations */
1275         inneriter                  += j_index_end - j_index_start;
1276
1277         /* Outer loop uses 18 flops */
1278     }
1279
1280     /* Increment number of outer iterations */
1281     outeriter        += nri;
1282
1283     /* Update outer/inner flops */
1284
1285     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*198);
1286 }