Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            None
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
89     real             *ewtab;
90     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
91     real             rswitch_scalar,d_scalar;
92     _fjsp_v2r8       itab_tmp;
93     _fjsp_v2r8       dummy_mask,cutoff_mask;
94     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
95     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
96     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
97
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
110     charge           = mdatoms->chargeA;
111
112     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
115     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
116
117     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
118     rcutoff_scalar   = fr->rcoulomb;
119     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
120     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
121
122     rswitch_scalar   = fr->rcoulomb_switch;
123     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
124     /* Setup switch parameters */
125     d_scalar         = rcutoff_scalar-rswitch_scalar;
126     d                = gmx_fjsp_set1_v2r8(d_scalar);
127     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
128     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
129     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
130     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
131     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
132     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
158
159         fix0             = _fjsp_setzero_v2r8();
160         fiy0             = _fjsp_setzero_v2r8();
161         fiz0             = _fjsp_setzero_v2r8();
162
163         /* Load parameters for i particles */
164         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
165
166         /* Reset potential sums */
167         velecsum         = _fjsp_setzero_v2r8();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178
179             /* load j atom coordinates */
180             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _fjsp_sub_v2r8(ix0,jx0);
185             dy00             = _fjsp_sub_v2r8(iy0,jy0);
186             dz00             = _fjsp_sub_v2r8(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
190
191             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
192
193             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
203             {
204
205             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _fjsp_mul_v2r8(iq0,jq0);
209
210             /* EWALD ELECTROSTATICS */
211
212             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
213             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
214             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
215             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
216             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
217
218             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
219             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
220             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
221             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
222             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
223             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
224             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
225             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
226             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
227             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
228
229             d                = _fjsp_sub_v2r8(r00,rswitch);
230             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
231             d2               = _fjsp_mul_v2r8(d,d);
232             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
233
234             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
235
236             /* Evaluate switch function */
237             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
238             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
239             velec            = _fjsp_mul_v2r8(velec,sw);
240             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
241
242             /* Update potential sum for this i atom from the interaction with this j atom. */
243             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
244             velecsum         = _fjsp_add_v2r8(velecsum,velec);
245
246             fscal            = felec;
247
248             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
249
250             /* Update vectorial force */
251             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
252             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
253             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
254             
255             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
256
257             }
258
259             /* Inner loop uses 68 flops */
260         }
261
262         if(jidx<j_index_end)
263         {
264
265             jnrA             = jjnr[jidx];
266             j_coord_offsetA  = DIM*jnrA;
267
268             /* load j atom coordinates */
269             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
270                                               &jx0,&jy0,&jz0);
271
272             /* Calculate displacement vector */
273             dx00             = _fjsp_sub_v2r8(ix0,jx0);
274             dy00             = _fjsp_sub_v2r8(iy0,jy0);
275             dz00             = _fjsp_sub_v2r8(iz0,jz0);
276
277             /* Calculate squared distance and things based on it */
278             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
279
280             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
281
282             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
283
284             /* Load parameters for j particles */
285             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
292             {
293
294             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq00             = _fjsp_mul_v2r8(iq0,jq0);
298
299             /* EWALD ELECTROSTATICS */
300
301             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
302             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
303             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
304             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
305             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
306
307             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
308             ewtabD           = _fjsp_setzero_v2r8();
309             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
310             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
311             ewtabFn          = _fjsp_setzero_v2r8();
312             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
313             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
314             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
315             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
316             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
317
318             d                = _fjsp_sub_v2r8(r00,rswitch);
319             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
320             d2               = _fjsp_mul_v2r8(d,d);
321             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
322
323             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
324
325             /* Evaluate switch function */
326             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
327             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
328             velec            = _fjsp_mul_v2r8(velec,sw);
329             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
333             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
334             velecsum         = _fjsp_add_v2r8(velecsum,velec);
335
336             fscal            = felec;
337
338             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
339
340             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
341
342             /* Update vectorial force */
343             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
344             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
345             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
346             
347             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
348
349             }
350
351             /* Inner loop uses 68 flops */
352         }
353
354         /* End of innermost loop */
355
356         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
357                                               f+i_coord_offset,fshift+i_shift_offset);
358
359         ggid                        = gid[iidx];
360         /* Update potential energies */
361         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
362
363         /* Increment number of inner iterations */
364         inneriter                  += j_index_end - j_index_start;
365
366         /* Outer loop uses 8 flops */
367     }
368
369     /* Increment number of outer iterations */
370     outeriter        += nri;
371
372     /* Update outer/inner flops */
373
374     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*68);
375 }
376 /*
377  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sparc64_hpc_ace_double
378  * Electrostatics interaction: Ewald
379  * VdW interaction:            None
380  * Geometry:                   Particle-Particle
381  * Calculate force/pot:        Force
382  */
383 void
384 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sparc64_hpc_ace_double
385                     (t_nblist                    * gmx_restrict       nlist,
386                      rvec                        * gmx_restrict          xx,
387                      rvec                        * gmx_restrict          ff,
388                      t_forcerec                  * gmx_restrict          fr,
389                      t_mdatoms                   * gmx_restrict     mdatoms,
390                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
391                      t_nrnb                      * gmx_restrict        nrnb)
392 {
393     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
394      * just 0 for non-waters.
395      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
396      * jnr indices corresponding to data put in the four positions in the SIMD register.
397      */
398     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
399     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
400     int              jnrA,jnrB;
401     int              j_coord_offsetA,j_coord_offsetB;
402     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
403     real             rcutoff_scalar;
404     real             *shiftvec,*fshift,*x,*f;
405     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
406     int              vdwioffset0;
407     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
408     int              vdwjidx0A,vdwjidx0B;
409     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
410     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
411     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
412     real             *charge;
413     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
414     real             *ewtab;
415     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
416     real             rswitch_scalar,d_scalar;
417     _fjsp_v2r8       itab_tmp;
418     _fjsp_v2r8       dummy_mask,cutoff_mask;
419     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
420     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
421     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
422
423     x                = xx[0];
424     f                = ff[0];
425
426     nri              = nlist->nri;
427     iinr             = nlist->iinr;
428     jindex           = nlist->jindex;
429     jjnr             = nlist->jjnr;
430     shiftidx         = nlist->shift;
431     gid              = nlist->gid;
432     shiftvec         = fr->shift_vec[0];
433     fshift           = fr->fshift[0];
434     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
435     charge           = mdatoms->chargeA;
436
437     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
438     ewtab            = fr->ic->tabq_coul_FDV0;
439     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
440     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
441
442     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
443     rcutoff_scalar   = fr->rcoulomb;
444     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
445     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
446
447     rswitch_scalar   = fr->rcoulomb_switch;
448     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
449     /* Setup switch parameters */
450     d_scalar         = rcutoff_scalar-rswitch_scalar;
451     d                = gmx_fjsp_set1_v2r8(d_scalar);
452     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
453     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
454     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
455     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
456     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
457     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
458
459     /* Avoid stupid compiler warnings */
460     jnrA = jnrB = 0;
461     j_coord_offsetA = 0;
462     j_coord_offsetB = 0;
463
464     outeriter        = 0;
465     inneriter        = 0;
466
467     /* Start outer loop over neighborlists */
468     for(iidx=0; iidx<nri; iidx++)
469     {
470         /* Load shift vector for this list */
471         i_shift_offset   = DIM*shiftidx[iidx];
472
473         /* Load limits for loop over neighbors */
474         j_index_start    = jindex[iidx];
475         j_index_end      = jindex[iidx+1];
476
477         /* Get outer coordinate index */
478         inr              = iinr[iidx];
479         i_coord_offset   = DIM*inr;
480
481         /* Load i particle coords and add shift vector */
482         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
483
484         fix0             = _fjsp_setzero_v2r8();
485         fiy0             = _fjsp_setzero_v2r8();
486         fiz0             = _fjsp_setzero_v2r8();
487
488         /* Load parameters for i particles */
489         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
490
491         /* Start inner kernel loop */
492         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
493         {
494
495             /* Get j neighbor index, and coordinate index */
496             jnrA             = jjnr[jidx];
497             jnrB             = jjnr[jidx+1];
498             j_coord_offsetA  = DIM*jnrA;
499             j_coord_offsetB  = DIM*jnrB;
500
501             /* load j atom coordinates */
502             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
503                                               &jx0,&jy0,&jz0);
504
505             /* Calculate displacement vector */
506             dx00             = _fjsp_sub_v2r8(ix0,jx0);
507             dy00             = _fjsp_sub_v2r8(iy0,jy0);
508             dz00             = _fjsp_sub_v2r8(iz0,jz0);
509
510             /* Calculate squared distance and things based on it */
511             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
512
513             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
514
515             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
516
517             /* Load parameters for j particles */
518             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
525             {
526
527             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
528
529             /* Compute parameters for interactions between i and j atoms */
530             qq00             = _fjsp_mul_v2r8(iq0,jq0);
531
532             /* EWALD ELECTROSTATICS */
533
534             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
535             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
536             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
537             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
538             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
539
540             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
541             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
542             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
543             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
544             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
545             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
546             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
547             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
548             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
549             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
550
551             d                = _fjsp_sub_v2r8(r00,rswitch);
552             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
553             d2               = _fjsp_mul_v2r8(d,d);
554             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
555
556             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
557
558             /* Evaluate switch function */
559             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
560             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
561             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
562
563             fscal            = felec;
564
565             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
566
567             /* Update vectorial force */
568             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
569             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
570             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
571             
572             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
573
574             }
575
576             /* Inner loop uses 65 flops */
577         }
578
579         if(jidx<j_index_end)
580         {
581
582             jnrA             = jjnr[jidx];
583             j_coord_offsetA  = DIM*jnrA;
584
585             /* load j atom coordinates */
586             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
587                                               &jx0,&jy0,&jz0);
588
589             /* Calculate displacement vector */
590             dx00             = _fjsp_sub_v2r8(ix0,jx0);
591             dy00             = _fjsp_sub_v2r8(iy0,jy0);
592             dz00             = _fjsp_sub_v2r8(iz0,jz0);
593
594             /* Calculate squared distance and things based on it */
595             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
596
597             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
598
599             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
600
601             /* Load parameters for j particles */
602             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
609             {
610
611             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq00             = _fjsp_mul_v2r8(iq0,jq0);
615
616             /* EWALD ELECTROSTATICS */
617
618             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
619             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
620             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
621             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
622             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
623
624             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
625             ewtabD           = _fjsp_setzero_v2r8();
626             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
627             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
628             ewtabFn          = _fjsp_setzero_v2r8();
629             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
630             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
631             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
632             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
633             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
634
635             d                = _fjsp_sub_v2r8(r00,rswitch);
636             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
637             d2               = _fjsp_mul_v2r8(d,d);
638             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
639
640             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
641
642             /* Evaluate switch function */
643             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
644             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
645             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
646
647             fscal            = felec;
648
649             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
650
651             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
652
653             /* Update vectorial force */
654             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
655             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
656             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
657             
658             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
659
660             }
661
662             /* Inner loop uses 65 flops */
663         }
664
665         /* End of innermost loop */
666
667         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
668                                               f+i_coord_offset,fshift+i_shift_offset);
669
670         /* Increment number of inner iterations */
671         inneriter                  += j_index_end - j_index_start;
672
673         /* Outer loop uses 7 flops */
674     }
675
676     /* Increment number of outer iterations */
677     outeriter        += nri;
678
679     /* Update outer/inner flops */
680
681     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*65);
682 }