45b6c0e02c752ec116ad833a8ede6d965a0745aa
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
87     real             *ewtab;
88     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89     real             rswitch_scalar,d_scalar;
90     _fjsp_v2r8       itab_tmp;
91     _fjsp_v2r8       dummy_mask,cutoff_mask;
92     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
93     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
94     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
95
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
113     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
114
115     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
116     rcutoff_scalar   = fr->rcoulomb;
117     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
118     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
119
120     rswitch_scalar   = fr->rcoulomb_switch;
121     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
122     /* Setup switch parameters */
123     d_scalar         = rcutoff_scalar-rswitch_scalar;
124     d                = gmx_fjsp_set1_v2r8(d_scalar);
125     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
126     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
127     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
128     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
129     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
130     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _fjsp_setzero_v2r8();
158         fiy0             = _fjsp_setzero_v2r8();
159         fiz0             = _fjsp_setzero_v2r8();
160
161         /* Load parameters for i particles */
162         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
163
164         /* Reset potential sums */
165         velecsum         = _fjsp_setzero_v2r8();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _fjsp_sub_v2r8(ix0,jx0);
183             dy00             = _fjsp_sub_v2r8(iy0,jy0);
184             dz00             = _fjsp_sub_v2r8(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
188
189             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
190
191             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
201             {
202
203             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _fjsp_mul_v2r8(iq0,jq0);
207
208             /* EWALD ELECTROSTATICS */
209
210             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
211             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
212             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
213             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
214             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
215
216             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
217             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
218             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
219             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
220             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
221             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
222             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
223             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
224             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
225             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
226
227             d                = _fjsp_sub_v2r8(r00,rswitch);
228             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
229             d2               = _fjsp_mul_v2r8(d,d);
230             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
231
232             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
233
234             /* Evaluate switch function */
235             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
236             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
237             velec            = _fjsp_mul_v2r8(velec,sw);
238             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
239
240             /* Update potential sum for this i atom from the interaction with this j atom. */
241             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
242             velecsum         = _fjsp_add_v2r8(velecsum,velec);
243
244             fscal            = felec;
245
246             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
247
248             /* Update vectorial force */
249             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
250             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
251             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
252             
253             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
254
255             }
256
257             /* Inner loop uses 68 flops */
258         }
259
260         if(jidx<j_index_end)
261         {
262
263             jnrA             = jjnr[jidx];
264             j_coord_offsetA  = DIM*jnrA;
265
266             /* load j atom coordinates */
267             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
268                                               &jx0,&jy0,&jz0);
269
270             /* Calculate displacement vector */
271             dx00             = _fjsp_sub_v2r8(ix0,jx0);
272             dy00             = _fjsp_sub_v2r8(iy0,jy0);
273             dz00             = _fjsp_sub_v2r8(iz0,jz0);
274
275             /* Calculate squared distance and things based on it */
276             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
277
278             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
279
280             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
281
282             /* Load parameters for j particles */
283             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
290             {
291
292             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq00             = _fjsp_mul_v2r8(iq0,jq0);
296
297             /* EWALD ELECTROSTATICS */
298
299             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
300             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
301             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
302             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
303             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
304
305             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
306             ewtabD           = _fjsp_setzero_v2r8();
307             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
308             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
309             ewtabFn          = _fjsp_setzero_v2r8();
310             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
311             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
312             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
313             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
314             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
315
316             d                = _fjsp_sub_v2r8(r00,rswitch);
317             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
318             d2               = _fjsp_mul_v2r8(d,d);
319             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
320
321             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
322
323             /* Evaluate switch function */
324             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
325             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
326             velec            = _fjsp_mul_v2r8(velec,sw);
327             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
331             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
332             velecsum         = _fjsp_add_v2r8(velecsum,velec);
333
334             fscal            = felec;
335
336             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
337
338             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
339
340             /* Update vectorial force */
341             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
342             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
343             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
344             
345             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
346
347             }
348
349             /* Inner loop uses 68 flops */
350         }
351
352         /* End of innermost loop */
353
354         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
355                                               f+i_coord_offset,fshift+i_shift_offset);
356
357         ggid                        = gid[iidx];
358         /* Update potential energies */
359         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
360
361         /* Increment number of inner iterations */
362         inneriter                  += j_index_end - j_index_start;
363
364         /* Outer loop uses 8 flops */
365     }
366
367     /* Increment number of outer iterations */
368     outeriter        += nri;
369
370     /* Update outer/inner flops */
371
372     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*68);
373 }
374 /*
375  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sparc64_hpc_ace_double
376  * Electrostatics interaction: Ewald
377  * VdW interaction:            None
378  * Geometry:                   Particle-Particle
379  * Calculate force/pot:        Force
380  */
381 void
382 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sparc64_hpc_ace_double
383                     (t_nblist                    * gmx_restrict       nlist,
384                      rvec                        * gmx_restrict          xx,
385                      rvec                        * gmx_restrict          ff,
386                      t_forcerec                  * gmx_restrict          fr,
387                      t_mdatoms                   * gmx_restrict     mdatoms,
388                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
389                      t_nrnb                      * gmx_restrict        nrnb)
390 {
391     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
392      * just 0 for non-waters.
393      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
394      * jnr indices corresponding to data put in the four positions in the SIMD register.
395      */
396     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
397     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
398     int              jnrA,jnrB;
399     int              j_coord_offsetA,j_coord_offsetB;
400     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
401     real             rcutoff_scalar;
402     real             *shiftvec,*fshift,*x,*f;
403     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
404     int              vdwioffset0;
405     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
406     int              vdwjidx0A,vdwjidx0B;
407     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
408     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
409     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
410     real             *charge;
411     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
412     real             *ewtab;
413     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
414     real             rswitch_scalar,d_scalar;
415     _fjsp_v2r8       itab_tmp;
416     _fjsp_v2r8       dummy_mask,cutoff_mask;
417     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
418     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
419     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
420
421     x                = xx[0];
422     f                = ff[0];
423
424     nri              = nlist->nri;
425     iinr             = nlist->iinr;
426     jindex           = nlist->jindex;
427     jjnr             = nlist->jjnr;
428     shiftidx         = nlist->shift;
429     gid              = nlist->gid;
430     shiftvec         = fr->shift_vec[0];
431     fshift           = fr->fshift[0];
432     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
433     charge           = mdatoms->chargeA;
434
435     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
436     ewtab            = fr->ic->tabq_coul_FDV0;
437     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
438     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
439
440     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
441     rcutoff_scalar   = fr->rcoulomb;
442     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
443     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
444
445     rswitch_scalar   = fr->rcoulomb_switch;
446     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
447     /* Setup switch parameters */
448     d_scalar         = rcutoff_scalar-rswitch_scalar;
449     d                = gmx_fjsp_set1_v2r8(d_scalar);
450     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
451     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
452     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
453     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
454     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
455     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
456
457     /* Avoid stupid compiler warnings */
458     jnrA = jnrB = 0;
459     j_coord_offsetA = 0;
460     j_coord_offsetB = 0;
461
462     outeriter        = 0;
463     inneriter        = 0;
464
465     /* Start outer loop over neighborlists */
466     for(iidx=0; iidx<nri; iidx++)
467     {
468         /* Load shift vector for this list */
469         i_shift_offset   = DIM*shiftidx[iidx];
470
471         /* Load limits for loop over neighbors */
472         j_index_start    = jindex[iidx];
473         j_index_end      = jindex[iidx+1];
474
475         /* Get outer coordinate index */
476         inr              = iinr[iidx];
477         i_coord_offset   = DIM*inr;
478
479         /* Load i particle coords and add shift vector */
480         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
481
482         fix0             = _fjsp_setzero_v2r8();
483         fiy0             = _fjsp_setzero_v2r8();
484         fiz0             = _fjsp_setzero_v2r8();
485
486         /* Load parameters for i particles */
487         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
488
489         /* Start inner kernel loop */
490         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
491         {
492
493             /* Get j neighbor index, and coordinate index */
494             jnrA             = jjnr[jidx];
495             jnrB             = jjnr[jidx+1];
496             j_coord_offsetA  = DIM*jnrA;
497             j_coord_offsetB  = DIM*jnrB;
498
499             /* load j atom coordinates */
500             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
501                                               &jx0,&jy0,&jz0);
502
503             /* Calculate displacement vector */
504             dx00             = _fjsp_sub_v2r8(ix0,jx0);
505             dy00             = _fjsp_sub_v2r8(iy0,jy0);
506             dz00             = _fjsp_sub_v2r8(iz0,jz0);
507
508             /* Calculate squared distance and things based on it */
509             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
510
511             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
512
513             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
514
515             /* Load parameters for j particles */
516             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
517
518             /**************************
519              * CALCULATE INTERACTIONS *
520              **************************/
521
522             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
523             {
524
525             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
526
527             /* Compute parameters for interactions between i and j atoms */
528             qq00             = _fjsp_mul_v2r8(iq0,jq0);
529
530             /* EWALD ELECTROSTATICS */
531
532             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
533             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
534             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
535             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
536             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
537
538             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
539             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
540             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
541             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
542             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
543             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
544             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
545             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
546             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
547             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
548
549             d                = _fjsp_sub_v2r8(r00,rswitch);
550             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
551             d2               = _fjsp_mul_v2r8(d,d);
552             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
553
554             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
555
556             /* Evaluate switch function */
557             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
558             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
559             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
560
561             fscal            = felec;
562
563             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
564
565             /* Update vectorial force */
566             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
567             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
568             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
569             
570             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
571
572             }
573
574             /* Inner loop uses 65 flops */
575         }
576
577         if(jidx<j_index_end)
578         {
579
580             jnrA             = jjnr[jidx];
581             j_coord_offsetA  = DIM*jnrA;
582
583             /* load j atom coordinates */
584             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
585                                               &jx0,&jy0,&jz0);
586
587             /* Calculate displacement vector */
588             dx00             = _fjsp_sub_v2r8(ix0,jx0);
589             dy00             = _fjsp_sub_v2r8(iy0,jy0);
590             dz00             = _fjsp_sub_v2r8(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
594
595             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
596
597             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
598
599             /* Load parameters for j particles */
600             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
607             {
608
609             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq00             = _fjsp_mul_v2r8(iq0,jq0);
613
614             /* EWALD ELECTROSTATICS */
615
616             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
617             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
618             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
619             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
620             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
621
622             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
623             ewtabD           = _fjsp_setzero_v2r8();
624             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
625             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
626             ewtabFn          = _fjsp_setzero_v2r8();
627             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
628             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
629             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
630             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
631             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
632
633             d                = _fjsp_sub_v2r8(r00,rswitch);
634             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
635             d2               = _fjsp_mul_v2r8(d,d);
636             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
637
638             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
639
640             /* Evaluate switch function */
641             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
642             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
643             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
644
645             fscal            = felec;
646
647             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
648
649             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
650
651             /* Update vectorial force */
652             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
653             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
654             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
655             
656             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
657
658             }
659
660             /* Inner loop uses 65 flops */
661         }
662
663         /* End of innermost loop */
664
665         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
666                                               f+i_coord_offset,fshift+i_shift_offset);
667
668         /* Increment number of inner iterations */
669         inneriter                  += j_index_end - j_index_start;
670
671         /* Outer loop uses 7 flops */
672     }
673
674     /* Increment number of outer iterations */
675     outeriter        += nri;
676
677     /* Update outer/inner flops */
678
679     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*65);
680 }