Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
101     real             rswitch_scalar,d_scalar;
102     _fjsp_v2r8       itab_tmp;
103     _fjsp_v2r8       dummy_mask,cutoff_mask;
104     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
105     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
106     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
128     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
133     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
134     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->ic->rcoulomb;
139     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
140     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
141
142     rswitch_scalar   = fr->ic->rcoulomb_switch;
143     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
144     /* Setup switch parameters */
145     d_scalar         = rcutoff_scalar-rswitch_scalar;
146     d                = gmx_fjsp_set1_v2r8(d_scalar);
147     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
148     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
151     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _fjsp_setzero_v2r8();
181         fiy0             = _fjsp_setzero_v2r8();
182         fiz0             = _fjsp_setzero_v2r8();
183         fix1             = _fjsp_setzero_v2r8();
184         fiy1             = _fjsp_setzero_v2r8();
185         fiz1             = _fjsp_setzero_v2r8();
186         fix2             = _fjsp_setzero_v2r8();
187         fiy2             = _fjsp_setzero_v2r8();
188         fiz2             = _fjsp_setzero_v2r8();
189
190         /* Reset potential sums */
191         velecsum         = _fjsp_setzero_v2r8();
192         vvdwsum          = _fjsp_setzero_v2r8();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203
204             /* load j atom coordinates */
205             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _fjsp_sub_v2r8(ix0,jx0);
210             dy00             = _fjsp_sub_v2r8(iy0,jy0);
211             dz00             = _fjsp_sub_v2r8(iz0,jz0);
212             dx10             = _fjsp_sub_v2r8(ix1,jx0);
213             dy10             = _fjsp_sub_v2r8(iy1,jy0);
214             dz10             = _fjsp_sub_v2r8(iz1,jz0);
215             dx20             = _fjsp_sub_v2r8(ix2,jx0);
216             dy20             = _fjsp_sub_v2r8(iy2,jy0);
217             dz20             = _fjsp_sub_v2r8(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
221             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
222             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
223
224             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
225             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
226             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
227
228             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
229             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
230             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236
237             fjx0             = _fjsp_setzero_v2r8();
238             fjy0             = _fjsp_setzero_v2r8();
239             fjz0             = _fjsp_setzero_v2r8();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
246             {
247
248             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _fjsp_mul_v2r8(iq0,jq0);
252             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
254
255             /* EWALD ELECTROSTATICS */
256
257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
258             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
259             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
260             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
261             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
262
263             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
264             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
265             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
266             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
267             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
268             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
269             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
270             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
271             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
272             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
273
274             /* LENNARD-JONES DISPERSION/REPULSION */
275
276             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
277             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
278             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
279             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
280             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
281
282             d                = _fjsp_sub_v2r8(r00,rswitch);
283             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
284             d2               = _fjsp_mul_v2r8(d,d);
285             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
286
287             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
288
289             /* Evaluate switch function */
290             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
291             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
292             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
293             velec            = _fjsp_mul_v2r8(velec,sw);
294             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
295             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
299             velecsum         = _fjsp_add_v2r8(velecsum,velec);
300             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
301             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
302
303             fscal            = _fjsp_add_v2r8(felec,fvdw);
304
305             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
306
307             /* Update vectorial force */
308             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
309             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
310             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
311             
312             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
313             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
314             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
315
316             }
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
323             {
324
325             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq10             = _fjsp_mul_v2r8(iq1,jq0);
329
330             /* EWALD ELECTROSTATICS */
331
332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
334             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
335             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
336             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
337
338             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
339             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
340             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
341             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
342             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
343             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
344             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
345             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
346             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
347             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
348
349             d                = _fjsp_sub_v2r8(r10,rswitch);
350             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
351             d2               = _fjsp_mul_v2r8(d,d);
352             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
353
354             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
355
356             /* Evaluate switch function */
357             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
358             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
359             velec            = _fjsp_mul_v2r8(velec,sw);
360             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
364             velecsum         = _fjsp_add_v2r8(velecsum,velec);
365
366             fscal            = felec;
367
368             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
369
370             /* Update vectorial force */
371             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
372             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
373             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
374             
375             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
376             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
377             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
378
379             }
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
386             {
387
388             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq20             = _fjsp_mul_v2r8(iq2,jq0);
392
393             /* EWALD ELECTROSTATICS */
394
395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
396             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
397             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
398             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
399             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
400
401             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
402             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
403             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
404             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
405             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
406             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
407             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
408             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
409             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
410             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
411
412             d                = _fjsp_sub_v2r8(r20,rswitch);
413             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
414             d2               = _fjsp_mul_v2r8(d,d);
415             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
416
417             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
418
419             /* Evaluate switch function */
420             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
421             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
422             velec            = _fjsp_mul_v2r8(velec,sw);
423             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
427             velecsum         = _fjsp_add_v2r8(velecsum,velec);
428
429             fscal            = felec;
430
431             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
432
433             /* Update vectorial force */
434             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
435             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
436             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
437             
438             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
439             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
440             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
441
442             }
443
444             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
445
446             /* Inner loop uses 225 flops */
447         }
448
449         if(jidx<j_index_end)
450         {
451
452             jnrA             = jjnr[jidx];
453             j_coord_offsetA  = DIM*jnrA;
454
455             /* load j atom coordinates */
456             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
457                                               &jx0,&jy0,&jz0);
458
459             /* Calculate displacement vector */
460             dx00             = _fjsp_sub_v2r8(ix0,jx0);
461             dy00             = _fjsp_sub_v2r8(iy0,jy0);
462             dz00             = _fjsp_sub_v2r8(iz0,jz0);
463             dx10             = _fjsp_sub_v2r8(ix1,jx0);
464             dy10             = _fjsp_sub_v2r8(iy1,jy0);
465             dz10             = _fjsp_sub_v2r8(iz1,jz0);
466             dx20             = _fjsp_sub_v2r8(ix2,jx0);
467             dy20             = _fjsp_sub_v2r8(iy2,jy0);
468             dz20             = _fjsp_sub_v2r8(iz2,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
472             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
473             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
474
475             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
476             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
477             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
478
479             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
480             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
481             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
482
483             /* Load parameters for j particles */
484             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486
487             fjx0             = _fjsp_setzero_v2r8();
488             fjy0             = _fjsp_setzero_v2r8();
489             fjz0             = _fjsp_setzero_v2r8();
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
496             {
497
498             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq00             = _fjsp_mul_v2r8(iq0,jq0);
502             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
503                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
504
505             /* EWALD ELECTROSTATICS */
506
507             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
508             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
509             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
510             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
511             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
512
513             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
514             ewtabD           = _fjsp_setzero_v2r8();
515             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
516             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
517             ewtabFn          = _fjsp_setzero_v2r8();
518             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
519             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
520             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
521             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
522             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
523
524             /* LENNARD-JONES DISPERSION/REPULSION */
525
526             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
527             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
528             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
529             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
530             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
531
532             d                = _fjsp_sub_v2r8(r00,rswitch);
533             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
534             d2               = _fjsp_mul_v2r8(d,d);
535             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
536
537             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
538
539             /* Evaluate switch function */
540             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
541             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
542             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
543             velec            = _fjsp_mul_v2r8(velec,sw);
544             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
545             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
546
547             /* Update potential sum for this i atom from the interaction with this j atom. */
548             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
549             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
550             velecsum         = _fjsp_add_v2r8(velecsum,velec);
551             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
552             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
553             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
554
555             fscal            = _fjsp_add_v2r8(felec,fvdw);
556
557             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
558
559             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
560
561             /* Update vectorial force */
562             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
563             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
564             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
565             
566             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
567             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
568             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
569
570             }
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
577             {
578
579             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq10             = _fjsp_mul_v2r8(iq1,jq0);
583
584             /* EWALD ELECTROSTATICS */
585
586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
588             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
589             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
590             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
591
592             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
593             ewtabD           = _fjsp_setzero_v2r8();
594             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
595             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
596             ewtabFn          = _fjsp_setzero_v2r8();
597             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
598             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
599             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
600             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
601             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
602
603             d                = _fjsp_sub_v2r8(r10,rswitch);
604             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
605             d2               = _fjsp_mul_v2r8(d,d);
606             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
607
608             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
609
610             /* Evaluate switch function */
611             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
612             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
613             velec            = _fjsp_mul_v2r8(velec,sw);
614             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
615
616             /* Update potential sum for this i atom from the interaction with this j atom. */
617             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
618             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
619             velecsum         = _fjsp_add_v2r8(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
624
625             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
626
627             /* Update vectorial force */
628             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
629             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
630             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
631             
632             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
633             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
634             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
635
636             }
637
638             /**************************
639              * CALCULATE INTERACTIONS *
640              **************************/
641
642             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
643             {
644
645             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq20             = _fjsp_mul_v2r8(iq2,jq0);
649
650             /* EWALD ELECTROSTATICS */
651
652             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
653             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
654             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
655             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
656             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
657
658             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
659             ewtabD           = _fjsp_setzero_v2r8();
660             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
661             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
662             ewtabFn          = _fjsp_setzero_v2r8();
663             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
664             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
665             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
666             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
667             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
668
669             d                = _fjsp_sub_v2r8(r20,rswitch);
670             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
671             d2               = _fjsp_mul_v2r8(d,d);
672             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
673
674             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
675
676             /* Evaluate switch function */
677             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
678             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
679             velec            = _fjsp_mul_v2r8(velec,sw);
680             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
681
682             /* Update potential sum for this i atom from the interaction with this j atom. */
683             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
684             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
685             velecsum         = _fjsp_add_v2r8(velecsum,velec);
686
687             fscal            = felec;
688
689             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
690
691             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
692
693             /* Update vectorial force */
694             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
695             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
696             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
697             
698             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
699             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
700             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
701
702             }
703
704             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
705
706             /* Inner loop uses 225 flops */
707         }
708
709         /* End of innermost loop */
710
711         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
712                                               f+i_coord_offset,fshift+i_shift_offset);
713
714         ggid                        = gid[iidx];
715         /* Update potential energies */
716         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
717         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
718
719         /* Increment number of inner iterations */
720         inneriter                  += j_index_end - j_index_start;
721
722         /* Outer loop uses 20 flops */
723     }
724
725     /* Increment number of outer iterations */
726     outeriter        += nri;
727
728     /* Update outer/inner flops */
729
730     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*225);
731 }
732 /*
733  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sparc64_hpc_ace_double
734  * Electrostatics interaction: Ewald
735  * VdW interaction:            LennardJones
736  * Geometry:                   Water3-Particle
737  * Calculate force/pot:        Force
738  */
739 void
740 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sparc64_hpc_ace_double
741                     (t_nblist                    * gmx_restrict       nlist,
742                      rvec                        * gmx_restrict          xx,
743                      rvec                        * gmx_restrict          ff,
744                      struct t_forcerec           * gmx_restrict          fr,
745                      t_mdatoms                   * gmx_restrict     mdatoms,
746                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
747                      t_nrnb                      * gmx_restrict        nrnb)
748 {
749     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
750      * just 0 for non-waters.
751      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
752      * jnr indices corresponding to data put in the four positions in the SIMD register.
753      */
754     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
755     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
756     int              jnrA,jnrB;
757     int              j_coord_offsetA,j_coord_offsetB;
758     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
759     real             rcutoff_scalar;
760     real             *shiftvec,*fshift,*x,*f;
761     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
762     int              vdwioffset0;
763     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
764     int              vdwioffset1;
765     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
766     int              vdwioffset2;
767     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
768     int              vdwjidx0A,vdwjidx0B;
769     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
770     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
771     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
772     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
773     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
774     real             *charge;
775     int              nvdwtype;
776     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
777     int              *vdwtype;
778     real             *vdwparam;
779     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
780     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
781     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
782     real             *ewtab;
783     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
784     real             rswitch_scalar,d_scalar;
785     _fjsp_v2r8       itab_tmp;
786     _fjsp_v2r8       dummy_mask,cutoff_mask;
787     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
788     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
789     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
790
791     x                = xx[0];
792     f                = ff[0];
793
794     nri              = nlist->nri;
795     iinr             = nlist->iinr;
796     jindex           = nlist->jindex;
797     jjnr             = nlist->jjnr;
798     shiftidx         = nlist->shift;
799     gid              = nlist->gid;
800     shiftvec         = fr->shift_vec[0];
801     fshift           = fr->fshift[0];
802     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
803     charge           = mdatoms->chargeA;
804     nvdwtype         = fr->ntype;
805     vdwparam         = fr->nbfp;
806     vdwtype          = mdatoms->typeA;
807
808     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
809     ewtab            = fr->ic->tabq_coul_FDV0;
810     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
811     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
812
813     /* Setup water-specific parameters */
814     inr              = nlist->iinr[0];
815     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
816     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
817     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
818     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
819
820     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
821     rcutoff_scalar   = fr->ic->rcoulomb;
822     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
823     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
824
825     rswitch_scalar   = fr->ic->rcoulomb_switch;
826     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
827     /* Setup switch parameters */
828     d_scalar         = rcutoff_scalar-rswitch_scalar;
829     d                = gmx_fjsp_set1_v2r8(d_scalar);
830     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
831     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
832     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
833     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
834     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
835     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
836
837     /* Avoid stupid compiler warnings */
838     jnrA = jnrB = 0;
839     j_coord_offsetA = 0;
840     j_coord_offsetB = 0;
841
842     outeriter        = 0;
843     inneriter        = 0;
844
845     /* Start outer loop over neighborlists */
846     for(iidx=0; iidx<nri; iidx++)
847     {
848         /* Load shift vector for this list */
849         i_shift_offset   = DIM*shiftidx[iidx];
850
851         /* Load limits for loop over neighbors */
852         j_index_start    = jindex[iidx];
853         j_index_end      = jindex[iidx+1];
854
855         /* Get outer coordinate index */
856         inr              = iinr[iidx];
857         i_coord_offset   = DIM*inr;
858
859         /* Load i particle coords and add shift vector */
860         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
861                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
862
863         fix0             = _fjsp_setzero_v2r8();
864         fiy0             = _fjsp_setzero_v2r8();
865         fiz0             = _fjsp_setzero_v2r8();
866         fix1             = _fjsp_setzero_v2r8();
867         fiy1             = _fjsp_setzero_v2r8();
868         fiz1             = _fjsp_setzero_v2r8();
869         fix2             = _fjsp_setzero_v2r8();
870         fiy2             = _fjsp_setzero_v2r8();
871         fiz2             = _fjsp_setzero_v2r8();
872
873         /* Start inner kernel loop */
874         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
875         {
876
877             /* Get j neighbor index, and coordinate index */
878             jnrA             = jjnr[jidx];
879             jnrB             = jjnr[jidx+1];
880             j_coord_offsetA  = DIM*jnrA;
881             j_coord_offsetB  = DIM*jnrB;
882
883             /* load j atom coordinates */
884             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
885                                               &jx0,&jy0,&jz0);
886
887             /* Calculate displacement vector */
888             dx00             = _fjsp_sub_v2r8(ix0,jx0);
889             dy00             = _fjsp_sub_v2r8(iy0,jy0);
890             dz00             = _fjsp_sub_v2r8(iz0,jz0);
891             dx10             = _fjsp_sub_v2r8(ix1,jx0);
892             dy10             = _fjsp_sub_v2r8(iy1,jy0);
893             dz10             = _fjsp_sub_v2r8(iz1,jz0);
894             dx20             = _fjsp_sub_v2r8(ix2,jx0);
895             dy20             = _fjsp_sub_v2r8(iy2,jy0);
896             dz20             = _fjsp_sub_v2r8(iz2,jz0);
897
898             /* Calculate squared distance and things based on it */
899             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
900             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
901             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
902
903             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
904             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
905             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
906
907             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
908             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
909             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
910
911             /* Load parameters for j particles */
912             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
913             vdwjidx0A        = 2*vdwtype[jnrA+0];
914             vdwjidx0B        = 2*vdwtype[jnrB+0];
915
916             fjx0             = _fjsp_setzero_v2r8();
917             fjy0             = _fjsp_setzero_v2r8();
918             fjz0             = _fjsp_setzero_v2r8();
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
925             {
926
927             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
928
929             /* Compute parameters for interactions between i and j atoms */
930             qq00             = _fjsp_mul_v2r8(iq0,jq0);
931             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
932                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
933
934             /* EWALD ELECTROSTATICS */
935
936             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
937             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
938             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
939             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
940             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
941
942             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
943             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
944             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
945             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
946             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
947             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
948             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
949             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
950             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
951             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
952
953             /* LENNARD-JONES DISPERSION/REPULSION */
954
955             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
956             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
957             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
958             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
959             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
960
961             d                = _fjsp_sub_v2r8(r00,rswitch);
962             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
963             d2               = _fjsp_mul_v2r8(d,d);
964             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
965
966             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
967
968             /* Evaluate switch function */
969             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
970             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
971             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
972             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
973
974             fscal            = _fjsp_add_v2r8(felec,fvdw);
975
976             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
977
978             /* Update vectorial force */
979             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
980             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
981             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
982             
983             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
984             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
985             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
986
987             }
988
989             /**************************
990              * CALCULATE INTERACTIONS *
991              **************************/
992
993             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
994             {
995
996             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
997
998             /* Compute parameters for interactions between i and j atoms */
999             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1000
1001             /* EWALD ELECTROSTATICS */
1002
1003             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1004             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1005             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1006             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1007             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1008
1009             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1010             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
1011             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1012             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1013             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
1014             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1015             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1016             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1017             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
1018             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1019
1020             d                = _fjsp_sub_v2r8(r10,rswitch);
1021             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1022             d2               = _fjsp_mul_v2r8(d,d);
1023             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1024
1025             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1026
1027             /* Evaluate switch function */
1028             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1029             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
1030             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1031
1032             fscal            = felec;
1033
1034             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1035
1036             /* Update vectorial force */
1037             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1038             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1039             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1040             
1041             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1042             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1043             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1044
1045             }
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1052             {
1053
1054             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1058
1059             /* EWALD ELECTROSTATICS */
1060
1061             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1062             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1063             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1064             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1065             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1066
1067             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1068             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
1069             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1070             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1071             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
1072             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1073             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1074             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1075             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1076             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1077
1078             d                = _fjsp_sub_v2r8(r20,rswitch);
1079             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1080             d2               = _fjsp_mul_v2r8(d,d);
1081             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1082
1083             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1084
1085             /* Evaluate switch function */
1086             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1087             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1088             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1089
1090             fscal            = felec;
1091
1092             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1093
1094             /* Update vectorial force */
1095             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1096             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1097             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1098             
1099             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1100             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1101             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1102
1103             }
1104
1105             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1106
1107             /* Inner loop uses 213 flops */
1108         }
1109
1110         if(jidx<j_index_end)
1111         {
1112
1113             jnrA             = jjnr[jidx];
1114             j_coord_offsetA  = DIM*jnrA;
1115
1116             /* load j atom coordinates */
1117             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1118                                               &jx0,&jy0,&jz0);
1119
1120             /* Calculate displacement vector */
1121             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1122             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1123             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1124             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1125             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1126             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1127             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1128             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1129             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1130
1131             /* Calculate squared distance and things based on it */
1132             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1133             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1134             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1135
1136             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1137             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1138             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1139
1140             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1141             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1142             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1143
1144             /* Load parameters for j particles */
1145             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1146             vdwjidx0A        = 2*vdwtype[jnrA+0];
1147
1148             fjx0             = _fjsp_setzero_v2r8();
1149             fjy0             = _fjsp_setzero_v2r8();
1150             fjz0             = _fjsp_setzero_v2r8();
1151
1152             /**************************
1153              * CALCULATE INTERACTIONS *
1154              **************************/
1155
1156             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1157             {
1158
1159             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1160
1161             /* Compute parameters for interactions between i and j atoms */
1162             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1163             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1164                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1165
1166             /* EWALD ELECTROSTATICS */
1167
1168             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1169             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1170             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1171             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1172             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1173
1174             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1175             ewtabD           = _fjsp_setzero_v2r8();
1176             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1177             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1178             ewtabFn          = _fjsp_setzero_v2r8();
1179             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1180             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1181             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1182             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
1183             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1184
1185             /* LENNARD-JONES DISPERSION/REPULSION */
1186
1187             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1188             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
1189             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
1190             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
1191             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
1192
1193             d                = _fjsp_sub_v2r8(r00,rswitch);
1194             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1195             d2               = _fjsp_mul_v2r8(d,d);
1196             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1197
1198             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1199
1200             /* Evaluate switch function */
1201             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1202             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
1203             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
1204             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1205
1206             fscal            = _fjsp_add_v2r8(felec,fvdw);
1207
1208             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1209
1210             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1211
1212             /* Update vectorial force */
1213             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1214             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1215             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1216             
1217             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1218             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1219             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1220
1221             }
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1228             {
1229
1230             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1231
1232             /* Compute parameters for interactions between i and j atoms */
1233             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1234
1235             /* EWALD ELECTROSTATICS */
1236
1237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1238             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1239             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1240             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1241             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1242
1243             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1244             ewtabD           = _fjsp_setzero_v2r8();
1245             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1246             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1247             ewtabFn          = _fjsp_setzero_v2r8();
1248             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1249             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1250             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1251             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
1252             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1253
1254             d                = _fjsp_sub_v2r8(r10,rswitch);
1255             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1256             d2               = _fjsp_mul_v2r8(d,d);
1257             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1258
1259             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1260
1261             /* Evaluate switch function */
1262             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1263             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
1264             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1265
1266             fscal            = felec;
1267
1268             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1269
1270             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1271
1272             /* Update vectorial force */
1273             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1274             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1275             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1276             
1277             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1278             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1279             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1280
1281             }
1282
1283             /**************************
1284              * CALCULATE INTERACTIONS *
1285              **************************/
1286
1287             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1288             {
1289
1290             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1291
1292             /* Compute parameters for interactions between i and j atoms */
1293             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1294
1295             /* EWALD ELECTROSTATICS */
1296
1297             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1298             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1299             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1300             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1301             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1302
1303             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1304             ewtabD           = _fjsp_setzero_v2r8();
1305             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1306             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1307             ewtabFn          = _fjsp_setzero_v2r8();
1308             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1309             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1310             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1311             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1312             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1313
1314             d                = _fjsp_sub_v2r8(r20,rswitch);
1315             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1316             d2               = _fjsp_mul_v2r8(d,d);
1317             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1318
1319             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1320
1321             /* Evaluate switch function */
1322             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1323             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1324             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1325
1326             fscal            = felec;
1327
1328             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1329
1330             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1331
1332             /* Update vectorial force */
1333             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1334             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1335             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1336             
1337             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1338             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1339             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1340
1341             }
1342
1343             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1344
1345             /* Inner loop uses 213 flops */
1346         }
1347
1348         /* End of innermost loop */
1349
1350         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1351                                               f+i_coord_offset,fshift+i_shift_offset);
1352
1353         /* Increment number of inner iterations */
1354         inneriter                  += j_index_end - j_index_start;
1355
1356         /* Outer loop uses 18 flops */
1357     }
1358
1359     /* Increment number of outer iterations */
1360     outeriter        += nri;
1361
1362     /* Update outer/inner flops */
1363
1364     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*213);
1365 }