Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LennardJones
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
103     real             rswitch_scalar,d_scalar;
104     _fjsp_v2r8       itab_tmp;
105     _fjsp_v2r8       dummy_mask,cutoff_mask;
106     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
107     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
108     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
109
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
128     ewtab            = fr->ic->tabq_coul_FDV0;
129     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
130     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
135     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
136     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->rcoulomb;
141     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
142     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
143
144     rswitch_scalar   = fr->rcoulomb_switch;
145     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
146     /* Setup switch parameters */
147     d_scalar         = rcutoff_scalar-rswitch_scalar;
148     d                = gmx_fjsp_set1_v2r8(d_scalar);
149     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
150     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
153     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _fjsp_setzero_v2r8();
183         fiy0             = _fjsp_setzero_v2r8();
184         fiz0             = _fjsp_setzero_v2r8();
185         fix1             = _fjsp_setzero_v2r8();
186         fiy1             = _fjsp_setzero_v2r8();
187         fiz1             = _fjsp_setzero_v2r8();
188         fix2             = _fjsp_setzero_v2r8();
189         fiy2             = _fjsp_setzero_v2r8();
190         fiz2             = _fjsp_setzero_v2r8();
191
192         /* Reset potential sums */
193         velecsum         = _fjsp_setzero_v2r8();
194         vvdwsum          = _fjsp_setzero_v2r8();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205
206             /* load j atom coordinates */
207             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _fjsp_sub_v2r8(ix0,jx0);
212             dy00             = _fjsp_sub_v2r8(iy0,jy0);
213             dz00             = _fjsp_sub_v2r8(iz0,jz0);
214             dx10             = _fjsp_sub_v2r8(ix1,jx0);
215             dy10             = _fjsp_sub_v2r8(iy1,jy0);
216             dz10             = _fjsp_sub_v2r8(iz1,jz0);
217             dx20             = _fjsp_sub_v2r8(ix2,jx0);
218             dy20             = _fjsp_sub_v2r8(iy2,jy0);
219             dz20             = _fjsp_sub_v2r8(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
223             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
224             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
225
226             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
227             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
228             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
229
230             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
231             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
232             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _fjsp_setzero_v2r8();
240             fjy0             = _fjsp_setzero_v2r8();
241             fjz0             = _fjsp_setzero_v2r8();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
248             {
249
250             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _fjsp_mul_v2r8(iq0,jq0);
254             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
256
257             /* EWALD ELECTROSTATICS */
258
259             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
260             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
261             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
262             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
263             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
264
265             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
266             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
267             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
268             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
269             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
270             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
271             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
272             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
273             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
274             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
275
276             /* LENNARD-JONES DISPERSION/REPULSION */
277
278             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
279             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
280             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
281             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
282             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
283
284             d                = _fjsp_sub_v2r8(r00,rswitch);
285             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
286             d2               = _fjsp_mul_v2r8(d,d);
287             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
288
289             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
290
291             /* Evaluate switch function */
292             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
293             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
294             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
295             velec            = _fjsp_mul_v2r8(velec,sw);
296             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
297             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
301             velecsum         = _fjsp_add_v2r8(velecsum,velec);
302             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
303             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
304
305             fscal            = _fjsp_add_v2r8(felec,fvdw);
306
307             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
308
309             /* Update vectorial force */
310             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
311             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
312             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
313             
314             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
315             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
316             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
317
318             }
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
325             {
326
327             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq10             = _fjsp_mul_v2r8(iq1,jq0);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
336             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
337             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
338             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
339
340             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
341             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
342             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
343             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
344             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
345             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
346             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
347             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
348             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
349             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
350
351             d                = _fjsp_sub_v2r8(r10,rswitch);
352             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
353             d2               = _fjsp_mul_v2r8(d,d);
354             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
355
356             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
357
358             /* Evaluate switch function */
359             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
360             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
361             velec            = _fjsp_mul_v2r8(velec,sw);
362             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
366             velecsum         = _fjsp_add_v2r8(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
371
372             /* Update vectorial force */
373             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
374             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
375             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
376             
377             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
378             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
379             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
380
381             }
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
388             {
389
390             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq20             = _fjsp_mul_v2r8(iq2,jq0);
394
395             /* EWALD ELECTROSTATICS */
396
397             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
398             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
399             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
400             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
401             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
402
403             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
404             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
405             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
406             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
407             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
408             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
409             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
410             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
411             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
412             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
413
414             d                = _fjsp_sub_v2r8(r20,rswitch);
415             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
416             d2               = _fjsp_mul_v2r8(d,d);
417             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
418
419             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
420
421             /* Evaluate switch function */
422             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
423             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
424             velec            = _fjsp_mul_v2r8(velec,sw);
425             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
429             velecsum         = _fjsp_add_v2r8(velecsum,velec);
430
431             fscal            = felec;
432
433             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
434
435             /* Update vectorial force */
436             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
437             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
438             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
439             
440             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
441             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
442             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
443
444             }
445
446             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
447
448             /* Inner loop uses 225 flops */
449         }
450
451         if(jidx<j_index_end)
452         {
453
454             jnrA             = jjnr[jidx];
455             j_coord_offsetA  = DIM*jnrA;
456
457             /* load j atom coordinates */
458             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
459                                               &jx0,&jy0,&jz0);
460
461             /* Calculate displacement vector */
462             dx00             = _fjsp_sub_v2r8(ix0,jx0);
463             dy00             = _fjsp_sub_v2r8(iy0,jy0);
464             dz00             = _fjsp_sub_v2r8(iz0,jz0);
465             dx10             = _fjsp_sub_v2r8(ix1,jx0);
466             dy10             = _fjsp_sub_v2r8(iy1,jy0);
467             dz10             = _fjsp_sub_v2r8(iz1,jz0);
468             dx20             = _fjsp_sub_v2r8(ix2,jx0);
469             dy20             = _fjsp_sub_v2r8(iy2,jy0);
470             dz20             = _fjsp_sub_v2r8(iz2,jz0);
471
472             /* Calculate squared distance and things based on it */
473             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
474             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
475             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
476
477             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
478             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
479             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
480
481             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
482             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
483             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
484
485             /* Load parameters for j particles */
486             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488
489             fjx0             = _fjsp_setzero_v2r8();
490             fjy0             = _fjsp_setzero_v2r8();
491             fjz0             = _fjsp_setzero_v2r8();
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
498             {
499
500             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq00             = _fjsp_mul_v2r8(iq0,jq0);
504             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
505                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
506
507             /* EWALD ELECTROSTATICS */
508
509             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
510             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
511             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
512             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
513             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
514
515             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
516             ewtabD           = _fjsp_setzero_v2r8();
517             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
518             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
519             ewtabFn          = _fjsp_setzero_v2r8();
520             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
521             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
522             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
523             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
524             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
525
526             /* LENNARD-JONES DISPERSION/REPULSION */
527
528             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
529             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
530             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
531             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
532             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
533
534             d                = _fjsp_sub_v2r8(r00,rswitch);
535             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
536             d2               = _fjsp_mul_v2r8(d,d);
537             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
538
539             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
540
541             /* Evaluate switch function */
542             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
543             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
544             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
545             velec            = _fjsp_mul_v2r8(velec,sw);
546             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
547             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
551             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
552             velecsum         = _fjsp_add_v2r8(velecsum,velec);
553             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
554             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
555             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
556
557             fscal            = _fjsp_add_v2r8(felec,fvdw);
558
559             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
560
561             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
562
563             /* Update vectorial force */
564             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
565             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
566             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
567             
568             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
569             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
570             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
571
572             }
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
579             {
580
581             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq10             = _fjsp_mul_v2r8(iq1,jq0);
585
586             /* EWALD ELECTROSTATICS */
587
588             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
589             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
590             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
591             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
592             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
593
594             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
595             ewtabD           = _fjsp_setzero_v2r8();
596             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
597             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
598             ewtabFn          = _fjsp_setzero_v2r8();
599             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
600             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
601             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
602             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
603             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
604
605             d                = _fjsp_sub_v2r8(r10,rswitch);
606             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
607             d2               = _fjsp_mul_v2r8(d,d);
608             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
609
610             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
611
612             /* Evaluate switch function */
613             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
614             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
615             velec            = _fjsp_mul_v2r8(velec,sw);
616             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
620             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
621             velecsum         = _fjsp_add_v2r8(velecsum,velec);
622
623             fscal            = felec;
624
625             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
626
627             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
628
629             /* Update vectorial force */
630             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
631             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
632             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
633             
634             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
635             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
636             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
637
638             }
639
640             /**************************
641              * CALCULATE INTERACTIONS *
642              **************************/
643
644             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
645             {
646
647             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
648
649             /* Compute parameters for interactions between i and j atoms */
650             qq20             = _fjsp_mul_v2r8(iq2,jq0);
651
652             /* EWALD ELECTROSTATICS */
653
654             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
655             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
656             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
657             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
658             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
659
660             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
661             ewtabD           = _fjsp_setzero_v2r8();
662             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
663             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
664             ewtabFn          = _fjsp_setzero_v2r8();
665             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
666             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
667             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
668             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
669             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
670
671             d                = _fjsp_sub_v2r8(r20,rswitch);
672             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
673             d2               = _fjsp_mul_v2r8(d,d);
674             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
675
676             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
677
678             /* Evaluate switch function */
679             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
680             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
681             velec            = _fjsp_mul_v2r8(velec,sw);
682             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
683
684             /* Update potential sum for this i atom from the interaction with this j atom. */
685             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
686             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
687             velecsum         = _fjsp_add_v2r8(velecsum,velec);
688
689             fscal            = felec;
690
691             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
692
693             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
694
695             /* Update vectorial force */
696             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
697             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
698             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
699             
700             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
701             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
702             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
703
704             }
705
706             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
707
708             /* Inner loop uses 225 flops */
709         }
710
711         /* End of innermost loop */
712
713         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
714                                               f+i_coord_offset,fshift+i_shift_offset);
715
716         ggid                        = gid[iidx];
717         /* Update potential energies */
718         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
719         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
720
721         /* Increment number of inner iterations */
722         inneriter                  += j_index_end - j_index_start;
723
724         /* Outer loop uses 20 flops */
725     }
726
727     /* Increment number of outer iterations */
728     outeriter        += nri;
729
730     /* Update outer/inner flops */
731
732     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*225);
733 }
734 /*
735  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sparc64_hpc_ace_double
736  * Electrostatics interaction: Ewald
737  * VdW interaction:            LennardJones
738  * Geometry:                   Water3-Particle
739  * Calculate force/pot:        Force
740  */
741 void
742 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sparc64_hpc_ace_double
743                     (t_nblist                    * gmx_restrict       nlist,
744                      rvec                        * gmx_restrict          xx,
745                      rvec                        * gmx_restrict          ff,
746                      t_forcerec                  * gmx_restrict          fr,
747                      t_mdatoms                   * gmx_restrict     mdatoms,
748                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
749                      t_nrnb                      * gmx_restrict        nrnb)
750 {
751     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
752      * just 0 for non-waters.
753      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
754      * jnr indices corresponding to data put in the four positions in the SIMD register.
755      */
756     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
757     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
758     int              jnrA,jnrB;
759     int              j_coord_offsetA,j_coord_offsetB;
760     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
761     real             rcutoff_scalar;
762     real             *shiftvec,*fshift,*x,*f;
763     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
764     int              vdwioffset0;
765     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
766     int              vdwioffset1;
767     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
768     int              vdwioffset2;
769     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
770     int              vdwjidx0A,vdwjidx0B;
771     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
772     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
773     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
774     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
775     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
776     real             *charge;
777     int              nvdwtype;
778     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
779     int              *vdwtype;
780     real             *vdwparam;
781     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
782     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
783     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
784     real             *ewtab;
785     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
786     real             rswitch_scalar,d_scalar;
787     _fjsp_v2r8       itab_tmp;
788     _fjsp_v2r8       dummy_mask,cutoff_mask;
789     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
790     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
791     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
792
793     x                = xx[0];
794     f                = ff[0];
795
796     nri              = nlist->nri;
797     iinr             = nlist->iinr;
798     jindex           = nlist->jindex;
799     jjnr             = nlist->jjnr;
800     shiftidx         = nlist->shift;
801     gid              = nlist->gid;
802     shiftvec         = fr->shift_vec[0];
803     fshift           = fr->fshift[0];
804     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
805     charge           = mdatoms->chargeA;
806     nvdwtype         = fr->ntype;
807     vdwparam         = fr->nbfp;
808     vdwtype          = mdatoms->typeA;
809
810     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
811     ewtab            = fr->ic->tabq_coul_FDV0;
812     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
813     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
814
815     /* Setup water-specific parameters */
816     inr              = nlist->iinr[0];
817     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
818     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
819     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
820     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
821
822     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
823     rcutoff_scalar   = fr->rcoulomb;
824     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
825     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
826
827     rswitch_scalar   = fr->rcoulomb_switch;
828     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
829     /* Setup switch parameters */
830     d_scalar         = rcutoff_scalar-rswitch_scalar;
831     d                = gmx_fjsp_set1_v2r8(d_scalar);
832     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
833     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
834     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
835     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
836     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
837     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
838
839     /* Avoid stupid compiler warnings */
840     jnrA = jnrB = 0;
841     j_coord_offsetA = 0;
842     j_coord_offsetB = 0;
843
844     outeriter        = 0;
845     inneriter        = 0;
846
847     /* Start outer loop over neighborlists */
848     for(iidx=0; iidx<nri; iidx++)
849     {
850         /* Load shift vector for this list */
851         i_shift_offset   = DIM*shiftidx[iidx];
852
853         /* Load limits for loop over neighbors */
854         j_index_start    = jindex[iidx];
855         j_index_end      = jindex[iidx+1];
856
857         /* Get outer coordinate index */
858         inr              = iinr[iidx];
859         i_coord_offset   = DIM*inr;
860
861         /* Load i particle coords and add shift vector */
862         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
863                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
864
865         fix0             = _fjsp_setzero_v2r8();
866         fiy0             = _fjsp_setzero_v2r8();
867         fiz0             = _fjsp_setzero_v2r8();
868         fix1             = _fjsp_setzero_v2r8();
869         fiy1             = _fjsp_setzero_v2r8();
870         fiz1             = _fjsp_setzero_v2r8();
871         fix2             = _fjsp_setzero_v2r8();
872         fiy2             = _fjsp_setzero_v2r8();
873         fiz2             = _fjsp_setzero_v2r8();
874
875         /* Start inner kernel loop */
876         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
877         {
878
879             /* Get j neighbor index, and coordinate index */
880             jnrA             = jjnr[jidx];
881             jnrB             = jjnr[jidx+1];
882             j_coord_offsetA  = DIM*jnrA;
883             j_coord_offsetB  = DIM*jnrB;
884
885             /* load j atom coordinates */
886             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
887                                               &jx0,&jy0,&jz0);
888
889             /* Calculate displacement vector */
890             dx00             = _fjsp_sub_v2r8(ix0,jx0);
891             dy00             = _fjsp_sub_v2r8(iy0,jy0);
892             dz00             = _fjsp_sub_v2r8(iz0,jz0);
893             dx10             = _fjsp_sub_v2r8(ix1,jx0);
894             dy10             = _fjsp_sub_v2r8(iy1,jy0);
895             dz10             = _fjsp_sub_v2r8(iz1,jz0);
896             dx20             = _fjsp_sub_v2r8(ix2,jx0);
897             dy20             = _fjsp_sub_v2r8(iy2,jy0);
898             dz20             = _fjsp_sub_v2r8(iz2,jz0);
899
900             /* Calculate squared distance and things based on it */
901             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
902             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
903             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
904
905             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
906             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
907             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
908
909             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
910             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
911             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
912
913             /* Load parameters for j particles */
914             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
915             vdwjidx0A        = 2*vdwtype[jnrA+0];
916             vdwjidx0B        = 2*vdwtype[jnrB+0];
917
918             fjx0             = _fjsp_setzero_v2r8();
919             fjy0             = _fjsp_setzero_v2r8();
920             fjz0             = _fjsp_setzero_v2r8();
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
927             {
928
929             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
930
931             /* Compute parameters for interactions between i and j atoms */
932             qq00             = _fjsp_mul_v2r8(iq0,jq0);
933             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
934                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
935
936             /* EWALD ELECTROSTATICS */
937
938             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
939             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
940             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
941             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
942             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
943
944             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
945             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
946             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
947             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
948             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
949             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
950             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
951             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
952             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
953             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
954
955             /* LENNARD-JONES DISPERSION/REPULSION */
956
957             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
958             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
959             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
960             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
961             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
962
963             d                = _fjsp_sub_v2r8(r00,rswitch);
964             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
965             d2               = _fjsp_mul_v2r8(d,d);
966             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
967
968             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
969
970             /* Evaluate switch function */
971             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
972             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
973             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
974             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
975
976             fscal            = _fjsp_add_v2r8(felec,fvdw);
977
978             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
979
980             /* Update vectorial force */
981             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
982             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
983             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
984             
985             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
986             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
987             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
988
989             }
990
991             /**************************
992              * CALCULATE INTERACTIONS *
993              **************************/
994
995             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
996             {
997
998             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1002
1003             /* EWALD ELECTROSTATICS */
1004
1005             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1006             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1007             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1008             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1009             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1010
1011             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1012             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
1013             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1014             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1015             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
1016             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1017             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1018             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1019             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
1020             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1021
1022             d                = _fjsp_sub_v2r8(r10,rswitch);
1023             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1024             d2               = _fjsp_mul_v2r8(d,d);
1025             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1026
1027             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1028
1029             /* Evaluate switch function */
1030             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1031             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
1032             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1033
1034             fscal            = felec;
1035
1036             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1037
1038             /* Update vectorial force */
1039             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1040             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1041             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1042             
1043             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1044             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1045             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1046
1047             }
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1054             {
1055
1056             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1060
1061             /* EWALD ELECTROSTATICS */
1062
1063             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1064             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1065             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1066             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1067             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1068
1069             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1070             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
1071             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1072             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1073             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
1074             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1075             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1076             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1077             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1078             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1079
1080             d                = _fjsp_sub_v2r8(r20,rswitch);
1081             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1082             d2               = _fjsp_mul_v2r8(d,d);
1083             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1084
1085             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1086
1087             /* Evaluate switch function */
1088             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1089             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1090             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1091
1092             fscal            = felec;
1093
1094             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1095
1096             /* Update vectorial force */
1097             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1098             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1099             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1100             
1101             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1102             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1103             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1104
1105             }
1106
1107             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1108
1109             /* Inner loop uses 213 flops */
1110         }
1111
1112         if(jidx<j_index_end)
1113         {
1114
1115             jnrA             = jjnr[jidx];
1116             j_coord_offsetA  = DIM*jnrA;
1117
1118             /* load j atom coordinates */
1119             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1120                                               &jx0,&jy0,&jz0);
1121
1122             /* Calculate displacement vector */
1123             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1124             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1125             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1126             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1127             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1128             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1129             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1130             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1131             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1132
1133             /* Calculate squared distance and things based on it */
1134             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1135             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1136             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1137
1138             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1139             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1140             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1141
1142             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1143             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1144             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1145
1146             /* Load parameters for j particles */
1147             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1148             vdwjidx0A        = 2*vdwtype[jnrA+0];
1149
1150             fjx0             = _fjsp_setzero_v2r8();
1151             fjy0             = _fjsp_setzero_v2r8();
1152             fjz0             = _fjsp_setzero_v2r8();
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1159             {
1160
1161             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1165             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1166                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1167
1168             /* EWALD ELECTROSTATICS */
1169
1170             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1171             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1172             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1173             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1174             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1175
1176             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1177             ewtabD           = _fjsp_setzero_v2r8();
1178             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1179             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1180             ewtabFn          = _fjsp_setzero_v2r8();
1181             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1182             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1183             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1184             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
1185             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1186
1187             /* LENNARD-JONES DISPERSION/REPULSION */
1188
1189             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1190             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
1191             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
1192             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
1193             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
1194
1195             d                = _fjsp_sub_v2r8(r00,rswitch);
1196             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1197             d2               = _fjsp_mul_v2r8(d,d);
1198             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1199
1200             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1201
1202             /* Evaluate switch function */
1203             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1204             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
1205             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
1206             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1207
1208             fscal            = _fjsp_add_v2r8(felec,fvdw);
1209
1210             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1211
1212             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1213
1214             /* Update vectorial force */
1215             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1216             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1217             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1218             
1219             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1220             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1221             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1222
1223             }
1224
1225             /**************************
1226              * CALCULATE INTERACTIONS *
1227              **************************/
1228
1229             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1230             {
1231
1232             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1233
1234             /* Compute parameters for interactions between i and j atoms */
1235             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1236
1237             /* EWALD ELECTROSTATICS */
1238
1239             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1240             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1241             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1242             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1243             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1244
1245             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1246             ewtabD           = _fjsp_setzero_v2r8();
1247             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1248             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1249             ewtabFn          = _fjsp_setzero_v2r8();
1250             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1251             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1252             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1253             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
1254             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1255
1256             d                = _fjsp_sub_v2r8(r10,rswitch);
1257             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1258             d2               = _fjsp_mul_v2r8(d,d);
1259             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1260
1261             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1262
1263             /* Evaluate switch function */
1264             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1265             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
1266             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1267
1268             fscal            = felec;
1269
1270             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1271
1272             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1273
1274             /* Update vectorial force */
1275             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1276             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1277             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1278             
1279             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1280             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1281             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1282
1283             }
1284
1285             /**************************
1286              * CALCULATE INTERACTIONS *
1287              **************************/
1288
1289             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1290             {
1291
1292             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1293
1294             /* Compute parameters for interactions between i and j atoms */
1295             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1296
1297             /* EWALD ELECTROSTATICS */
1298
1299             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1300             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1301             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1302             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1303             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1304
1305             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1306             ewtabD           = _fjsp_setzero_v2r8();
1307             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1308             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1309             ewtabFn          = _fjsp_setzero_v2r8();
1310             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1311             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1312             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1313             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1314             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1315
1316             d                = _fjsp_sub_v2r8(r20,rswitch);
1317             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1318             d2               = _fjsp_mul_v2r8(d,d);
1319             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1320
1321             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1322
1323             /* Evaluate switch function */
1324             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1325             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1326             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1327
1328             fscal            = felec;
1329
1330             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1331
1332             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1333
1334             /* Update vectorial force */
1335             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1336             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1337             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1338             
1339             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1340             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1341             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1342
1343             }
1344
1345             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1346
1347             /* Inner loop uses 213 flops */
1348         }
1349
1350         /* End of innermost loop */
1351
1352         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1353                                               f+i_coord_offset,fshift+i_shift_offset);
1354
1355         /* Increment number of inner iterations */
1356         inneriter                  += j_index_end - j_index_start;
1357
1358         /* Outer loop uses 18 flops */
1359     }
1360
1361     /* Increment number of outer iterations */
1362     outeriter        += nri;
1363
1364     /* Update outer/inner flops */
1365
1366     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*213);
1367 }