615994a0cf3c86c5293000f551d19035be8e322c
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
101     real             rswitch_scalar,d_scalar;
102     _fjsp_v2r8       itab_tmp;
103     _fjsp_v2r8       dummy_mask,cutoff_mask;
104     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
105     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
106     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
128     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
133     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
134     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
140     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
141
142     rswitch_scalar   = fr->rcoulomb_switch;
143     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
144     /* Setup switch parameters */
145     d_scalar         = rcutoff_scalar-rswitch_scalar;
146     d                = gmx_fjsp_set1_v2r8(d_scalar);
147     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
148     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
151     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _fjsp_setzero_v2r8();
181         fiy0             = _fjsp_setzero_v2r8();
182         fiz0             = _fjsp_setzero_v2r8();
183         fix1             = _fjsp_setzero_v2r8();
184         fiy1             = _fjsp_setzero_v2r8();
185         fiz1             = _fjsp_setzero_v2r8();
186         fix2             = _fjsp_setzero_v2r8();
187         fiy2             = _fjsp_setzero_v2r8();
188         fiz2             = _fjsp_setzero_v2r8();
189
190         /* Reset potential sums */
191         velecsum         = _fjsp_setzero_v2r8();
192         vvdwsum          = _fjsp_setzero_v2r8();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203
204             /* load j atom coordinates */
205             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _fjsp_sub_v2r8(ix0,jx0);
210             dy00             = _fjsp_sub_v2r8(iy0,jy0);
211             dz00             = _fjsp_sub_v2r8(iz0,jz0);
212             dx10             = _fjsp_sub_v2r8(ix1,jx0);
213             dy10             = _fjsp_sub_v2r8(iy1,jy0);
214             dz10             = _fjsp_sub_v2r8(iz1,jz0);
215             dx20             = _fjsp_sub_v2r8(ix2,jx0);
216             dy20             = _fjsp_sub_v2r8(iy2,jy0);
217             dz20             = _fjsp_sub_v2r8(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
221             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
222             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
223
224             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
225             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
226             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
227
228             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
229             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
230             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236
237             fjx0             = _fjsp_setzero_v2r8();
238             fjy0             = _fjsp_setzero_v2r8();
239             fjz0             = _fjsp_setzero_v2r8();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
246             {
247
248             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _fjsp_mul_v2r8(iq0,jq0);
252             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
254
255             /* EWALD ELECTROSTATICS */
256
257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
258             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
259             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
260             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
261             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
262
263             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
264             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
265             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
266             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
267             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
268             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
269             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
270             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
271             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
272             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
273
274             /* LENNARD-JONES DISPERSION/REPULSION */
275
276             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
277             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
278             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
279             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
280             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
281
282             d                = _fjsp_sub_v2r8(r00,rswitch);
283             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
284             d2               = _fjsp_mul_v2r8(d,d);
285             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
286
287             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
288
289             /* Evaluate switch function */
290             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
291             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
292             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
293             velec            = _fjsp_mul_v2r8(velec,sw);
294             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
295             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
299             velecsum         = _fjsp_add_v2r8(velecsum,velec);
300             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
301             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
302
303             fscal            = _fjsp_add_v2r8(felec,fvdw);
304
305             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
306
307             /* Update vectorial force */
308             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
309             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
310             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
311             
312             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
313             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
314             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
315
316             }
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
323             {
324
325             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq10             = _fjsp_mul_v2r8(iq1,jq0);
329
330             /* EWALD ELECTROSTATICS */
331
332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
334             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
335             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
336             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
337
338             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
339             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
340             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
341             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
342             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
343             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
344             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
345             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
346             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
347             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
348
349             d                = _fjsp_sub_v2r8(r10,rswitch);
350             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
351             d2               = _fjsp_mul_v2r8(d,d);
352             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
353
354             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
355
356             /* Evaluate switch function */
357             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
358             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
359             velec            = _fjsp_mul_v2r8(velec,sw);
360             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
364             velecsum         = _fjsp_add_v2r8(velecsum,velec);
365
366             fscal            = felec;
367
368             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
369
370             /* Update vectorial force */
371             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
372             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
373             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
374             
375             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
376             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
377             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
378
379             }
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
386             {
387
388             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq20             = _fjsp_mul_v2r8(iq2,jq0);
392
393             /* EWALD ELECTROSTATICS */
394
395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
396             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
397             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
398             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
399             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
400
401             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
402             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
403             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
404             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
405             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
406             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
407             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
408             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
409             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
410             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
411
412             d                = _fjsp_sub_v2r8(r20,rswitch);
413             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
414             d2               = _fjsp_mul_v2r8(d,d);
415             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
416
417             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
418
419             /* Evaluate switch function */
420             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
421             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
422             velec            = _fjsp_mul_v2r8(velec,sw);
423             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
427             velecsum         = _fjsp_add_v2r8(velecsum,velec);
428
429             fscal            = felec;
430
431             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
432
433             /* Update vectorial force */
434             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
435             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
436             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
437             
438             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
439             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
440             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
441
442             }
443
444             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
445
446             /* Inner loop uses 225 flops */
447         }
448
449         if(jidx<j_index_end)
450         {
451
452             jnrA             = jjnr[jidx];
453             j_coord_offsetA  = DIM*jnrA;
454
455             /* load j atom coordinates */
456             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
457                                               &jx0,&jy0,&jz0);
458
459             /* Calculate displacement vector */
460             dx00             = _fjsp_sub_v2r8(ix0,jx0);
461             dy00             = _fjsp_sub_v2r8(iy0,jy0);
462             dz00             = _fjsp_sub_v2r8(iz0,jz0);
463             dx10             = _fjsp_sub_v2r8(ix1,jx0);
464             dy10             = _fjsp_sub_v2r8(iy1,jy0);
465             dz10             = _fjsp_sub_v2r8(iz1,jz0);
466             dx20             = _fjsp_sub_v2r8(ix2,jx0);
467             dy20             = _fjsp_sub_v2r8(iy2,jy0);
468             dz20             = _fjsp_sub_v2r8(iz2,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
472             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
473             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
474
475             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
476             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
477             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
478
479             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
480             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
481             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
482
483             /* Load parameters for j particles */
484             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486
487             fjx0             = _fjsp_setzero_v2r8();
488             fjy0             = _fjsp_setzero_v2r8();
489             fjz0             = _fjsp_setzero_v2r8();
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
496             {
497
498             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq00             = _fjsp_mul_v2r8(iq0,jq0);
502             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
503
504             /* EWALD ELECTROSTATICS */
505
506             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
507             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
508             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
509             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
510             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
511
512             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
513             ewtabD           = _fjsp_setzero_v2r8();
514             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
515             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
516             ewtabFn          = _fjsp_setzero_v2r8();
517             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
518             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
519             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
520             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
521             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
522
523             /* LENNARD-JONES DISPERSION/REPULSION */
524
525             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
526             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
527             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
528             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
529             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
530
531             d                = _fjsp_sub_v2r8(r00,rswitch);
532             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
533             d2               = _fjsp_mul_v2r8(d,d);
534             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
535
536             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
537
538             /* Evaluate switch function */
539             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
540             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
541             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
542             velec            = _fjsp_mul_v2r8(velec,sw);
543             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
544             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
548             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
549             velecsum         = _fjsp_add_v2r8(velecsum,velec);
550             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
551             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
552             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
553
554             fscal            = _fjsp_add_v2r8(felec,fvdw);
555
556             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
557
558             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
559
560             /* Update vectorial force */
561             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
562             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
563             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
564             
565             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
566             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
567             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
568
569             }
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
576             {
577
578             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq10             = _fjsp_mul_v2r8(iq1,jq0);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
587             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
588             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
589             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
590
591             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
592             ewtabD           = _fjsp_setzero_v2r8();
593             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
594             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
595             ewtabFn          = _fjsp_setzero_v2r8();
596             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
597             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
598             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
599             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
600             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
601
602             d                = _fjsp_sub_v2r8(r10,rswitch);
603             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
604             d2               = _fjsp_mul_v2r8(d,d);
605             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
606
607             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
608
609             /* Evaluate switch function */
610             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
611             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
612             velec            = _fjsp_mul_v2r8(velec,sw);
613             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
617             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
618             velecsum         = _fjsp_add_v2r8(velecsum,velec);
619
620             fscal            = felec;
621
622             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
623
624             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
625
626             /* Update vectorial force */
627             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
628             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
629             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
630             
631             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
632             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
633             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
634
635             }
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
642             {
643
644             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq20             = _fjsp_mul_v2r8(iq2,jq0);
648
649             /* EWALD ELECTROSTATICS */
650
651             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
652             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
653             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
654             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
655             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
656
657             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
658             ewtabD           = _fjsp_setzero_v2r8();
659             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
660             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
661             ewtabFn          = _fjsp_setzero_v2r8();
662             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
663             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
664             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
665             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
666             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
667
668             d                = _fjsp_sub_v2r8(r20,rswitch);
669             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
670             d2               = _fjsp_mul_v2r8(d,d);
671             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
672
673             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
674
675             /* Evaluate switch function */
676             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
677             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
678             velec            = _fjsp_mul_v2r8(velec,sw);
679             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
680
681             /* Update potential sum for this i atom from the interaction with this j atom. */
682             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
683             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
684             velecsum         = _fjsp_add_v2r8(velecsum,velec);
685
686             fscal            = felec;
687
688             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
689
690             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
691
692             /* Update vectorial force */
693             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
694             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
695             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
696             
697             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
698             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
699             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
700
701             }
702
703             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
704
705             /* Inner loop uses 225 flops */
706         }
707
708         /* End of innermost loop */
709
710         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
711                                               f+i_coord_offset,fshift+i_shift_offset);
712
713         ggid                        = gid[iidx];
714         /* Update potential energies */
715         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
716         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
717
718         /* Increment number of inner iterations */
719         inneriter                  += j_index_end - j_index_start;
720
721         /* Outer loop uses 20 flops */
722     }
723
724     /* Increment number of outer iterations */
725     outeriter        += nri;
726
727     /* Update outer/inner flops */
728
729     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*225);
730 }
731 /*
732  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sparc64_hpc_ace_double
733  * Electrostatics interaction: Ewald
734  * VdW interaction:            LennardJones
735  * Geometry:                   Water3-Particle
736  * Calculate force/pot:        Force
737  */
738 void
739 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sparc64_hpc_ace_double
740                     (t_nblist                    * gmx_restrict       nlist,
741                      rvec                        * gmx_restrict          xx,
742                      rvec                        * gmx_restrict          ff,
743                      t_forcerec                  * gmx_restrict          fr,
744                      t_mdatoms                   * gmx_restrict     mdatoms,
745                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
746                      t_nrnb                      * gmx_restrict        nrnb)
747 {
748     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
749      * just 0 for non-waters.
750      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
751      * jnr indices corresponding to data put in the four positions in the SIMD register.
752      */
753     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
754     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
755     int              jnrA,jnrB;
756     int              j_coord_offsetA,j_coord_offsetB;
757     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
758     real             rcutoff_scalar;
759     real             *shiftvec,*fshift,*x,*f;
760     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
761     int              vdwioffset0;
762     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
763     int              vdwioffset1;
764     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
765     int              vdwioffset2;
766     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
767     int              vdwjidx0A,vdwjidx0B;
768     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
769     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
770     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
771     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
772     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
773     real             *charge;
774     int              nvdwtype;
775     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
776     int              *vdwtype;
777     real             *vdwparam;
778     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
779     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
780     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
781     real             *ewtab;
782     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
783     real             rswitch_scalar,d_scalar;
784     _fjsp_v2r8       itab_tmp;
785     _fjsp_v2r8       dummy_mask,cutoff_mask;
786     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
787     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
788     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
789
790     x                = xx[0];
791     f                = ff[0];
792
793     nri              = nlist->nri;
794     iinr             = nlist->iinr;
795     jindex           = nlist->jindex;
796     jjnr             = nlist->jjnr;
797     shiftidx         = nlist->shift;
798     gid              = nlist->gid;
799     shiftvec         = fr->shift_vec[0];
800     fshift           = fr->fshift[0];
801     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
802     charge           = mdatoms->chargeA;
803     nvdwtype         = fr->ntype;
804     vdwparam         = fr->nbfp;
805     vdwtype          = mdatoms->typeA;
806
807     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
808     ewtab            = fr->ic->tabq_coul_FDV0;
809     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
810     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
811
812     /* Setup water-specific parameters */
813     inr              = nlist->iinr[0];
814     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
815     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
816     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
817     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
818
819     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
820     rcutoff_scalar   = fr->rcoulomb;
821     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
822     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
823
824     rswitch_scalar   = fr->rcoulomb_switch;
825     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
826     /* Setup switch parameters */
827     d_scalar         = rcutoff_scalar-rswitch_scalar;
828     d                = gmx_fjsp_set1_v2r8(d_scalar);
829     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
830     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
831     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
832     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
833     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
834     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
835
836     /* Avoid stupid compiler warnings */
837     jnrA = jnrB = 0;
838     j_coord_offsetA = 0;
839     j_coord_offsetB = 0;
840
841     outeriter        = 0;
842     inneriter        = 0;
843
844     /* Start outer loop over neighborlists */
845     for(iidx=0; iidx<nri; iidx++)
846     {
847         /* Load shift vector for this list */
848         i_shift_offset   = DIM*shiftidx[iidx];
849
850         /* Load limits for loop over neighbors */
851         j_index_start    = jindex[iidx];
852         j_index_end      = jindex[iidx+1];
853
854         /* Get outer coordinate index */
855         inr              = iinr[iidx];
856         i_coord_offset   = DIM*inr;
857
858         /* Load i particle coords and add shift vector */
859         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
860                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
861
862         fix0             = _fjsp_setzero_v2r8();
863         fiy0             = _fjsp_setzero_v2r8();
864         fiz0             = _fjsp_setzero_v2r8();
865         fix1             = _fjsp_setzero_v2r8();
866         fiy1             = _fjsp_setzero_v2r8();
867         fiz1             = _fjsp_setzero_v2r8();
868         fix2             = _fjsp_setzero_v2r8();
869         fiy2             = _fjsp_setzero_v2r8();
870         fiz2             = _fjsp_setzero_v2r8();
871
872         /* Start inner kernel loop */
873         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
874         {
875
876             /* Get j neighbor index, and coordinate index */
877             jnrA             = jjnr[jidx];
878             jnrB             = jjnr[jidx+1];
879             j_coord_offsetA  = DIM*jnrA;
880             j_coord_offsetB  = DIM*jnrB;
881
882             /* load j atom coordinates */
883             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
884                                               &jx0,&jy0,&jz0);
885
886             /* Calculate displacement vector */
887             dx00             = _fjsp_sub_v2r8(ix0,jx0);
888             dy00             = _fjsp_sub_v2r8(iy0,jy0);
889             dz00             = _fjsp_sub_v2r8(iz0,jz0);
890             dx10             = _fjsp_sub_v2r8(ix1,jx0);
891             dy10             = _fjsp_sub_v2r8(iy1,jy0);
892             dz10             = _fjsp_sub_v2r8(iz1,jz0);
893             dx20             = _fjsp_sub_v2r8(ix2,jx0);
894             dy20             = _fjsp_sub_v2r8(iy2,jy0);
895             dz20             = _fjsp_sub_v2r8(iz2,jz0);
896
897             /* Calculate squared distance and things based on it */
898             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
899             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
900             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
901
902             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
903             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
904             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
905
906             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
907             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
908             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
909
910             /* Load parameters for j particles */
911             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
912             vdwjidx0A        = 2*vdwtype[jnrA+0];
913             vdwjidx0B        = 2*vdwtype[jnrB+0];
914
915             fjx0             = _fjsp_setzero_v2r8();
916             fjy0             = _fjsp_setzero_v2r8();
917             fjz0             = _fjsp_setzero_v2r8();
918
919             /**************************
920              * CALCULATE INTERACTIONS *
921              **************************/
922
923             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
924             {
925
926             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
927
928             /* Compute parameters for interactions between i and j atoms */
929             qq00             = _fjsp_mul_v2r8(iq0,jq0);
930             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
931                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
932
933             /* EWALD ELECTROSTATICS */
934
935             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
936             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
937             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
938             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
939             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
940
941             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
942             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
943             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
944             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
945             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
946             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
947             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
948             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
949             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
950             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
951
952             /* LENNARD-JONES DISPERSION/REPULSION */
953
954             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
955             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
956             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
957             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
958             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
959
960             d                = _fjsp_sub_v2r8(r00,rswitch);
961             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
962             d2               = _fjsp_mul_v2r8(d,d);
963             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
964
965             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
966
967             /* Evaluate switch function */
968             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
969             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
970             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
971             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
972
973             fscal            = _fjsp_add_v2r8(felec,fvdw);
974
975             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
976
977             /* Update vectorial force */
978             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
979             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
980             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
981             
982             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
983             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
984             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
985
986             }
987
988             /**************************
989              * CALCULATE INTERACTIONS *
990              **************************/
991
992             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
993             {
994
995             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
996
997             /* Compute parameters for interactions between i and j atoms */
998             qq10             = _fjsp_mul_v2r8(iq1,jq0);
999
1000             /* EWALD ELECTROSTATICS */
1001
1002             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1003             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1004             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1005             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1006             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1007
1008             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1009             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
1010             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1011             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1012             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
1013             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1014             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1015             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1016             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
1017             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1018
1019             d                = _fjsp_sub_v2r8(r10,rswitch);
1020             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1021             d2               = _fjsp_mul_v2r8(d,d);
1022             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1023
1024             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1025
1026             /* Evaluate switch function */
1027             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1028             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
1029             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1030
1031             fscal            = felec;
1032
1033             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1034
1035             /* Update vectorial force */
1036             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1037             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1038             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1039             
1040             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1041             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1042             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1043
1044             }
1045
1046             /**************************
1047              * CALCULATE INTERACTIONS *
1048              **************************/
1049
1050             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1051             {
1052
1053             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1057
1058             /* EWALD ELECTROSTATICS */
1059
1060             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1061             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1062             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1063             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1064             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1065
1066             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1067             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
1068             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1069             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1070             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
1071             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1072             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1073             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1074             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1075             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1076
1077             d                = _fjsp_sub_v2r8(r20,rswitch);
1078             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1079             d2               = _fjsp_mul_v2r8(d,d);
1080             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1081
1082             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1083
1084             /* Evaluate switch function */
1085             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1086             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1087             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1088
1089             fscal            = felec;
1090
1091             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1092
1093             /* Update vectorial force */
1094             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1095             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1096             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1097             
1098             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1099             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1100             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1101
1102             }
1103
1104             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1105
1106             /* Inner loop uses 213 flops */
1107         }
1108
1109         if(jidx<j_index_end)
1110         {
1111
1112             jnrA             = jjnr[jidx];
1113             j_coord_offsetA  = DIM*jnrA;
1114
1115             /* load j atom coordinates */
1116             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1117                                               &jx0,&jy0,&jz0);
1118
1119             /* Calculate displacement vector */
1120             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1121             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1122             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1123             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1124             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1125             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1126             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1127             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1128             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1129
1130             /* Calculate squared distance and things based on it */
1131             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1132             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1133             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1134
1135             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1136             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1137             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1138
1139             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1140             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1141             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1142
1143             /* Load parameters for j particles */
1144             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1145             vdwjidx0A        = 2*vdwtype[jnrA+0];
1146
1147             fjx0             = _fjsp_setzero_v2r8();
1148             fjy0             = _fjsp_setzero_v2r8();
1149             fjz0             = _fjsp_setzero_v2r8();
1150
1151             /**************************
1152              * CALCULATE INTERACTIONS *
1153              **************************/
1154
1155             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1156             {
1157
1158             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1162             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1163
1164             /* EWALD ELECTROSTATICS */
1165
1166             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1167             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1168             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1169             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1170             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1171
1172             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1173             ewtabD           = _fjsp_setzero_v2r8();
1174             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1175             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1176             ewtabFn          = _fjsp_setzero_v2r8();
1177             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1178             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1179             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1180             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
1181             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1182
1183             /* LENNARD-JONES DISPERSION/REPULSION */
1184
1185             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1186             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
1187             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
1188             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
1189             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
1190
1191             d                = _fjsp_sub_v2r8(r00,rswitch);
1192             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1193             d2               = _fjsp_mul_v2r8(d,d);
1194             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1195
1196             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1197
1198             /* Evaluate switch function */
1199             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1200             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
1201             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
1202             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1203
1204             fscal            = _fjsp_add_v2r8(felec,fvdw);
1205
1206             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1207
1208             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1209
1210             /* Update vectorial force */
1211             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1212             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1213             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1214             
1215             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1216             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1217             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1218
1219             }
1220
1221             /**************************
1222              * CALCULATE INTERACTIONS *
1223              **************************/
1224
1225             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1226             {
1227
1228             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1229
1230             /* Compute parameters for interactions between i and j atoms */
1231             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1232
1233             /* EWALD ELECTROSTATICS */
1234
1235             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1236             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1237             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1238             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1239             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1240
1241             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1242             ewtabD           = _fjsp_setzero_v2r8();
1243             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1244             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1245             ewtabFn          = _fjsp_setzero_v2r8();
1246             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1247             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1248             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1249             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
1250             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1251
1252             d                = _fjsp_sub_v2r8(r10,rswitch);
1253             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1254             d2               = _fjsp_mul_v2r8(d,d);
1255             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1256
1257             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1258
1259             /* Evaluate switch function */
1260             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1261             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
1262             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1263
1264             fscal            = felec;
1265
1266             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1267
1268             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1269
1270             /* Update vectorial force */
1271             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1272             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1273             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1274             
1275             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1276             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1277             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1278
1279             }
1280
1281             /**************************
1282              * CALCULATE INTERACTIONS *
1283              **************************/
1284
1285             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1286             {
1287
1288             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1289
1290             /* Compute parameters for interactions between i and j atoms */
1291             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1292
1293             /* EWALD ELECTROSTATICS */
1294
1295             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1296             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1297             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1298             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1299             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1300
1301             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1302             ewtabD           = _fjsp_setzero_v2r8();
1303             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1304             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1305             ewtabFn          = _fjsp_setzero_v2r8();
1306             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1307             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1308             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1309             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1310             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1311
1312             d                = _fjsp_sub_v2r8(r20,rswitch);
1313             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1314             d2               = _fjsp_mul_v2r8(d,d);
1315             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1316
1317             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1318
1319             /* Evaluate switch function */
1320             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1321             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1322             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1323
1324             fscal            = felec;
1325
1326             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1327
1328             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1329
1330             /* Update vectorial force */
1331             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1332             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1333             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1334             
1335             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1336             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1337             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1338
1339             }
1340
1341             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1342
1343             /* Inner loop uses 213 flops */
1344         }
1345
1346         /* End of innermost loop */
1347
1348         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1349                                               f+i_coord_offset,fshift+i_shift_offset);
1350
1351         /* Increment number of inner iterations */
1352         inneriter                  += j_index_end - j_index_start;
1353
1354         /* Outer loop uses 18 flops */
1355     }
1356
1357     /* Increment number of outer iterations */
1358     outeriter        += nri;
1359
1360     /* Update outer/inner flops */
1361
1362     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*213);
1363 }