Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LennardJones
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
103     real             rswitch_scalar,d_scalar;
104     _fjsp_v2r8       itab_tmp;
105     _fjsp_v2r8       dummy_mask,cutoff_mask;
106     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
107     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
108     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
109
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
128     ewtab            = fr->ic->tabq_coul_FDV0;
129     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
130     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
135     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
136     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->rcoulomb;
141     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
142     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
143
144     rswitch_scalar   = fr->rcoulomb_switch;
145     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
146     /* Setup switch parameters */
147     d_scalar         = rcutoff_scalar-rswitch_scalar;
148     d                = gmx_fjsp_set1_v2r8(d_scalar);
149     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
150     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
153     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _fjsp_setzero_v2r8();
183         fiy0             = _fjsp_setzero_v2r8();
184         fiz0             = _fjsp_setzero_v2r8();
185         fix1             = _fjsp_setzero_v2r8();
186         fiy1             = _fjsp_setzero_v2r8();
187         fiz1             = _fjsp_setzero_v2r8();
188         fix2             = _fjsp_setzero_v2r8();
189         fiy2             = _fjsp_setzero_v2r8();
190         fiz2             = _fjsp_setzero_v2r8();
191
192         /* Reset potential sums */
193         velecsum         = _fjsp_setzero_v2r8();
194         vvdwsum          = _fjsp_setzero_v2r8();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205
206             /* load j atom coordinates */
207             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _fjsp_sub_v2r8(ix0,jx0);
212             dy00             = _fjsp_sub_v2r8(iy0,jy0);
213             dz00             = _fjsp_sub_v2r8(iz0,jz0);
214             dx10             = _fjsp_sub_v2r8(ix1,jx0);
215             dy10             = _fjsp_sub_v2r8(iy1,jy0);
216             dz10             = _fjsp_sub_v2r8(iz1,jz0);
217             dx20             = _fjsp_sub_v2r8(ix2,jx0);
218             dy20             = _fjsp_sub_v2r8(iy2,jy0);
219             dz20             = _fjsp_sub_v2r8(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
223             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
224             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
225
226             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
227             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
228             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
229
230             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
231             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
232             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _fjsp_setzero_v2r8();
240             fjy0             = _fjsp_setzero_v2r8();
241             fjz0             = _fjsp_setzero_v2r8();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
248             {
249
250             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _fjsp_mul_v2r8(iq0,jq0);
254             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
256
257             /* EWALD ELECTROSTATICS */
258
259             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
260             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
261             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
262             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
263             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
264
265             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
266             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
267             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
268             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
269             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
270             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
271             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
272             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
273             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
274             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
275
276             /* LENNARD-JONES DISPERSION/REPULSION */
277
278             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
279             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
280             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
281             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
282             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
283
284             d                = _fjsp_sub_v2r8(r00,rswitch);
285             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
286             d2               = _fjsp_mul_v2r8(d,d);
287             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
288
289             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
290
291             /* Evaluate switch function */
292             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
293             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
294             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
295             velec            = _fjsp_mul_v2r8(velec,sw);
296             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
297             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
301             velecsum         = _fjsp_add_v2r8(velecsum,velec);
302             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
303             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
304
305             fscal            = _fjsp_add_v2r8(felec,fvdw);
306
307             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
308
309             /* Update vectorial force */
310             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
311             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
312             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
313             
314             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
315             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
316             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
317
318             }
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
325             {
326
327             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq10             = _fjsp_mul_v2r8(iq1,jq0);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
336             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
337             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
338             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
339
340             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
341             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
342             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
343             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
344             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
345             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
346             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
347             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
348             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
349             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
350
351             d                = _fjsp_sub_v2r8(r10,rswitch);
352             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
353             d2               = _fjsp_mul_v2r8(d,d);
354             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
355
356             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
357
358             /* Evaluate switch function */
359             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
360             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
361             velec            = _fjsp_mul_v2r8(velec,sw);
362             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
366             velecsum         = _fjsp_add_v2r8(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
371
372             /* Update vectorial force */
373             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
374             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
375             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
376             
377             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
378             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
379             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
380
381             }
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
388             {
389
390             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq20             = _fjsp_mul_v2r8(iq2,jq0);
394
395             /* EWALD ELECTROSTATICS */
396
397             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
398             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
399             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
400             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
401             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
402
403             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
404             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
405             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
406             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
407             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
408             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
409             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
410             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
411             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
412             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
413
414             d                = _fjsp_sub_v2r8(r20,rswitch);
415             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
416             d2               = _fjsp_mul_v2r8(d,d);
417             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
418
419             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
420
421             /* Evaluate switch function */
422             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
423             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
424             velec            = _fjsp_mul_v2r8(velec,sw);
425             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
429             velecsum         = _fjsp_add_v2r8(velecsum,velec);
430
431             fscal            = felec;
432
433             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
434
435             /* Update vectorial force */
436             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
437             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
438             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
439             
440             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
441             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
442             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
443
444             }
445
446             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
447
448             /* Inner loop uses 225 flops */
449         }
450
451         if(jidx<j_index_end)
452         {
453
454             jnrA             = jjnr[jidx];
455             j_coord_offsetA  = DIM*jnrA;
456
457             /* load j atom coordinates */
458             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
459                                               &jx0,&jy0,&jz0);
460
461             /* Calculate displacement vector */
462             dx00             = _fjsp_sub_v2r8(ix0,jx0);
463             dy00             = _fjsp_sub_v2r8(iy0,jy0);
464             dz00             = _fjsp_sub_v2r8(iz0,jz0);
465             dx10             = _fjsp_sub_v2r8(ix1,jx0);
466             dy10             = _fjsp_sub_v2r8(iy1,jy0);
467             dz10             = _fjsp_sub_v2r8(iz1,jz0);
468             dx20             = _fjsp_sub_v2r8(ix2,jx0);
469             dy20             = _fjsp_sub_v2r8(iy2,jy0);
470             dz20             = _fjsp_sub_v2r8(iz2,jz0);
471
472             /* Calculate squared distance and things based on it */
473             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
474             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
475             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
476
477             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
478             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
479             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
480
481             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
482             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
483             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
484
485             /* Load parameters for j particles */
486             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488
489             fjx0             = _fjsp_setzero_v2r8();
490             fjy0             = _fjsp_setzero_v2r8();
491             fjz0             = _fjsp_setzero_v2r8();
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
498             {
499
500             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq00             = _fjsp_mul_v2r8(iq0,jq0);
504             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
505
506             /* EWALD ELECTROSTATICS */
507
508             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
509             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
510             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
511             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
512             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
513
514             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
515             ewtabD           = _fjsp_setzero_v2r8();
516             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
517             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
518             ewtabFn          = _fjsp_setzero_v2r8();
519             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
520             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
521             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
522             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
523             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
524
525             /* LENNARD-JONES DISPERSION/REPULSION */
526
527             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
528             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
529             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
530             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
531             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
532
533             d                = _fjsp_sub_v2r8(r00,rswitch);
534             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
535             d2               = _fjsp_mul_v2r8(d,d);
536             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
537
538             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
539
540             /* Evaluate switch function */
541             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
542             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
543             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
544             velec            = _fjsp_mul_v2r8(velec,sw);
545             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
546             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
550             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
551             velecsum         = _fjsp_add_v2r8(velecsum,velec);
552             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
553             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
554             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
555
556             fscal            = _fjsp_add_v2r8(felec,fvdw);
557
558             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
559
560             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
561
562             /* Update vectorial force */
563             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
564             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
565             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
566             
567             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
568             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
569             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
570
571             }
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
578             {
579
580             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq10             = _fjsp_mul_v2r8(iq1,jq0);
584
585             /* EWALD ELECTROSTATICS */
586
587             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
588             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
589             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
590             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
591             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
592
593             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
594             ewtabD           = _fjsp_setzero_v2r8();
595             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
596             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
597             ewtabFn          = _fjsp_setzero_v2r8();
598             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
599             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
600             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
601             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
602             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
603
604             d                = _fjsp_sub_v2r8(r10,rswitch);
605             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
606             d2               = _fjsp_mul_v2r8(d,d);
607             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
608
609             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
610
611             /* Evaluate switch function */
612             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
613             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
614             velec            = _fjsp_mul_v2r8(velec,sw);
615             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
619             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
620             velecsum         = _fjsp_add_v2r8(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
625
626             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
627
628             /* Update vectorial force */
629             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
630             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
631             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
632             
633             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
634             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
635             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
636
637             }
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
644             {
645
646             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq20             = _fjsp_mul_v2r8(iq2,jq0);
650
651             /* EWALD ELECTROSTATICS */
652
653             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
654             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
655             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
656             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
657             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
658
659             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
660             ewtabD           = _fjsp_setzero_v2r8();
661             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
662             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
663             ewtabFn          = _fjsp_setzero_v2r8();
664             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
665             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
666             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
667             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
668             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
669
670             d                = _fjsp_sub_v2r8(r20,rswitch);
671             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
672             d2               = _fjsp_mul_v2r8(d,d);
673             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
674
675             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
676
677             /* Evaluate switch function */
678             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
679             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
680             velec            = _fjsp_mul_v2r8(velec,sw);
681             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
682
683             /* Update potential sum for this i atom from the interaction with this j atom. */
684             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
685             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
686             velecsum         = _fjsp_add_v2r8(velecsum,velec);
687
688             fscal            = felec;
689
690             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
691
692             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
693
694             /* Update vectorial force */
695             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
696             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
697             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
698             
699             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
700             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
701             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
702
703             }
704
705             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
706
707             /* Inner loop uses 225 flops */
708         }
709
710         /* End of innermost loop */
711
712         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
713                                               f+i_coord_offset,fshift+i_shift_offset);
714
715         ggid                        = gid[iidx];
716         /* Update potential energies */
717         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
718         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
719
720         /* Increment number of inner iterations */
721         inneriter                  += j_index_end - j_index_start;
722
723         /* Outer loop uses 20 flops */
724     }
725
726     /* Increment number of outer iterations */
727     outeriter        += nri;
728
729     /* Update outer/inner flops */
730
731     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*225);
732 }
733 /*
734  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sparc64_hpc_ace_double
735  * Electrostatics interaction: Ewald
736  * VdW interaction:            LennardJones
737  * Geometry:                   Water3-Particle
738  * Calculate force/pot:        Force
739  */
740 void
741 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sparc64_hpc_ace_double
742                     (t_nblist                    * gmx_restrict       nlist,
743                      rvec                        * gmx_restrict          xx,
744                      rvec                        * gmx_restrict          ff,
745                      t_forcerec                  * gmx_restrict          fr,
746                      t_mdatoms                   * gmx_restrict     mdatoms,
747                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
748                      t_nrnb                      * gmx_restrict        nrnb)
749 {
750     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
751      * just 0 for non-waters.
752      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
753      * jnr indices corresponding to data put in the four positions in the SIMD register.
754      */
755     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
756     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
757     int              jnrA,jnrB;
758     int              j_coord_offsetA,j_coord_offsetB;
759     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
760     real             rcutoff_scalar;
761     real             *shiftvec,*fshift,*x,*f;
762     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
763     int              vdwioffset0;
764     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
765     int              vdwioffset1;
766     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
767     int              vdwioffset2;
768     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
769     int              vdwjidx0A,vdwjidx0B;
770     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
771     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
772     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
773     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
774     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
775     real             *charge;
776     int              nvdwtype;
777     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
778     int              *vdwtype;
779     real             *vdwparam;
780     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
781     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
782     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
783     real             *ewtab;
784     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
785     real             rswitch_scalar,d_scalar;
786     _fjsp_v2r8       itab_tmp;
787     _fjsp_v2r8       dummy_mask,cutoff_mask;
788     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
789     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
790     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
791
792     x                = xx[0];
793     f                = ff[0];
794
795     nri              = nlist->nri;
796     iinr             = nlist->iinr;
797     jindex           = nlist->jindex;
798     jjnr             = nlist->jjnr;
799     shiftidx         = nlist->shift;
800     gid              = nlist->gid;
801     shiftvec         = fr->shift_vec[0];
802     fshift           = fr->fshift[0];
803     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
804     charge           = mdatoms->chargeA;
805     nvdwtype         = fr->ntype;
806     vdwparam         = fr->nbfp;
807     vdwtype          = mdatoms->typeA;
808
809     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
810     ewtab            = fr->ic->tabq_coul_FDV0;
811     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
812     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
813
814     /* Setup water-specific parameters */
815     inr              = nlist->iinr[0];
816     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
817     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
818     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
819     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
820
821     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
822     rcutoff_scalar   = fr->rcoulomb;
823     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
824     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
825
826     rswitch_scalar   = fr->rcoulomb_switch;
827     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
828     /* Setup switch parameters */
829     d_scalar         = rcutoff_scalar-rswitch_scalar;
830     d                = gmx_fjsp_set1_v2r8(d_scalar);
831     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
832     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
833     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
834     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
835     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
836     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
837
838     /* Avoid stupid compiler warnings */
839     jnrA = jnrB = 0;
840     j_coord_offsetA = 0;
841     j_coord_offsetB = 0;
842
843     outeriter        = 0;
844     inneriter        = 0;
845
846     /* Start outer loop over neighborlists */
847     for(iidx=0; iidx<nri; iidx++)
848     {
849         /* Load shift vector for this list */
850         i_shift_offset   = DIM*shiftidx[iidx];
851
852         /* Load limits for loop over neighbors */
853         j_index_start    = jindex[iidx];
854         j_index_end      = jindex[iidx+1];
855
856         /* Get outer coordinate index */
857         inr              = iinr[iidx];
858         i_coord_offset   = DIM*inr;
859
860         /* Load i particle coords and add shift vector */
861         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
862                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
863
864         fix0             = _fjsp_setzero_v2r8();
865         fiy0             = _fjsp_setzero_v2r8();
866         fiz0             = _fjsp_setzero_v2r8();
867         fix1             = _fjsp_setzero_v2r8();
868         fiy1             = _fjsp_setzero_v2r8();
869         fiz1             = _fjsp_setzero_v2r8();
870         fix2             = _fjsp_setzero_v2r8();
871         fiy2             = _fjsp_setzero_v2r8();
872         fiz2             = _fjsp_setzero_v2r8();
873
874         /* Start inner kernel loop */
875         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
876         {
877
878             /* Get j neighbor index, and coordinate index */
879             jnrA             = jjnr[jidx];
880             jnrB             = jjnr[jidx+1];
881             j_coord_offsetA  = DIM*jnrA;
882             j_coord_offsetB  = DIM*jnrB;
883
884             /* load j atom coordinates */
885             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
886                                               &jx0,&jy0,&jz0);
887
888             /* Calculate displacement vector */
889             dx00             = _fjsp_sub_v2r8(ix0,jx0);
890             dy00             = _fjsp_sub_v2r8(iy0,jy0);
891             dz00             = _fjsp_sub_v2r8(iz0,jz0);
892             dx10             = _fjsp_sub_v2r8(ix1,jx0);
893             dy10             = _fjsp_sub_v2r8(iy1,jy0);
894             dz10             = _fjsp_sub_v2r8(iz1,jz0);
895             dx20             = _fjsp_sub_v2r8(ix2,jx0);
896             dy20             = _fjsp_sub_v2r8(iy2,jy0);
897             dz20             = _fjsp_sub_v2r8(iz2,jz0);
898
899             /* Calculate squared distance and things based on it */
900             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
901             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
902             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
903
904             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
905             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
906             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
907
908             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
909             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
910             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
911
912             /* Load parameters for j particles */
913             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
914             vdwjidx0A        = 2*vdwtype[jnrA+0];
915             vdwjidx0B        = 2*vdwtype[jnrB+0];
916
917             fjx0             = _fjsp_setzero_v2r8();
918             fjy0             = _fjsp_setzero_v2r8();
919             fjz0             = _fjsp_setzero_v2r8();
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
926             {
927
928             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
929
930             /* Compute parameters for interactions between i and j atoms */
931             qq00             = _fjsp_mul_v2r8(iq0,jq0);
932             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
933                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
934
935             /* EWALD ELECTROSTATICS */
936
937             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
938             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
939             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
940             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
941             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
942
943             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
944             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
945             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
946             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
947             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
948             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
949             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
950             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
951             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
952             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
953
954             /* LENNARD-JONES DISPERSION/REPULSION */
955
956             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
957             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
958             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
959             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
960             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
961
962             d                = _fjsp_sub_v2r8(r00,rswitch);
963             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
964             d2               = _fjsp_mul_v2r8(d,d);
965             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
966
967             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
968
969             /* Evaluate switch function */
970             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
971             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
972             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
973             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
974
975             fscal            = _fjsp_add_v2r8(felec,fvdw);
976
977             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
978
979             /* Update vectorial force */
980             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
981             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
982             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
983             
984             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
985             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
986             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
987
988             }
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
995             {
996
997             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
998
999             /* Compute parameters for interactions between i and j atoms */
1000             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1001
1002             /* EWALD ELECTROSTATICS */
1003
1004             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1005             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1006             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1007             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1008             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1009
1010             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1011             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
1012             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1013             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1014             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
1015             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1016             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1017             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1018             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
1019             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1020
1021             d                = _fjsp_sub_v2r8(r10,rswitch);
1022             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1023             d2               = _fjsp_mul_v2r8(d,d);
1024             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1025
1026             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1027
1028             /* Evaluate switch function */
1029             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1030             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
1031             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1032
1033             fscal            = felec;
1034
1035             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1036
1037             /* Update vectorial force */
1038             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1039             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1040             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1041             
1042             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1043             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1044             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1045
1046             }
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1053             {
1054
1055             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1059
1060             /* EWALD ELECTROSTATICS */
1061
1062             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1063             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1064             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1065             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1066             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1067
1068             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1069             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
1070             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1071             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1072             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
1073             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1074             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1075             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1076             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1077             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1078
1079             d                = _fjsp_sub_v2r8(r20,rswitch);
1080             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1081             d2               = _fjsp_mul_v2r8(d,d);
1082             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1083
1084             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1085
1086             /* Evaluate switch function */
1087             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1088             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1089             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1090
1091             fscal            = felec;
1092
1093             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1094
1095             /* Update vectorial force */
1096             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1097             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1098             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1099             
1100             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1101             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1102             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1103
1104             }
1105
1106             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1107
1108             /* Inner loop uses 213 flops */
1109         }
1110
1111         if(jidx<j_index_end)
1112         {
1113
1114             jnrA             = jjnr[jidx];
1115             j_coord_offsetA  = DIM*jnrA;
1116
1117             /* load j atom coordinates */
1118             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1119                                               &jx0,&jy0,&jz0);
1120
1121             /* Calculate displacement vector */
1122             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1123             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1124             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1125             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1126             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1127             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1128             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1129             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1130             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1131
1132             /* Calculate squared distance and things based on it */
1133             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1134             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1135             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1136
1137             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1138             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1139             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1140
1141             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1142             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1143             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1144
1145             /* Load parameters for j particles */
1146             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1147             vdwjidx0A        = 2*vdwtype[jnrA+0];
1148
1149             fjx0             = _fjsp_setzero_v2r8();
1150             fjy0             = _fjsp_setzero_v2r8();
1151             fjz0             = _fjsp_setzero_v2r8();
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1158             {
1159
1160             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1161
1162             /* Compute parameters for interactions between i and j atoms */
1163             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1164             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1165
1166             /* EWALD ELECTROSTATICS */
1167
1168             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1169             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1170             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1171             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1172             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1173
1174             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1175             ewtabD           = _fjsp_setzero_v2r8();
1176             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1177             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1178             ewtabFn          = _fjsp_setzero_v2r8();
1179             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1180             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1181             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1182             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
1183             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1184
1185             /* LENNARD-JONES DISPERSION/REPULSION */
1186
1187             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1188             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
1189             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
1190             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
1191             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
1192
1193             d                = _fjsp_sub_v2r8(r00,rswitch);
1194             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1195             d2               = _fjsp_mul_v2r8(d,d);
1196             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1197
1198             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1199
1200             /* Evaluate switch function */
1201             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1202             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
1203             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
1204             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1205
1206             fscal            = _fjsp_add_v2r8(felec,fvdw);
1207
1208             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1209
1210             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1211
1212             /* Update vectorial force */
1213             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1214             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1215             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1216             
1217             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1218             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1219             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1220
1221             }
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1228             {
1229
1230             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1231
1232             /* Compute parameters for interactions between i and j atoms */
1233             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1234
1235             /* EWALD ELECTROSTATICS */
1236
1237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1238             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1239             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1240             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1241             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1242
1243             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1244             ewtabD           = _fjsp_setzero_v2r8();
1245             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1246             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1247             ewtabFn          = _fjsp_setzero_v2r8();
1248             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1249             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1250             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1251             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
1252             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1253
1254             d                = _fjsp_sub_v2r8(r10,rswitch);
1255             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1256             d2               = _fjsp_mul_v2r8(d,d);
1257             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1258
1259             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1260
1261             /* Evaluate switch function */
1262             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1263             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv10,_fjsp_mul_v2r8(velec,dsw)) );
1264             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1265
1266             fscal            = felec;
1267
1268             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1269
1270             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1271
1272             /* Update vectorial force */
1273             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1274             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1275             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1276             
1277             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1278             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1279             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1280
1281             }
1282
1283             /**************************
1284              * CALCULATE INTERACTIONS *
1285              **************************/
1286
1287             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1288             {
1289
1290             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1291
1292             /* Compute parameters for interactions between i and j atoms */
1293             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1294
1295             /* EWALD ELECTROSTATICS */
1296
1297             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1298             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1299             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1300             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1301             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1302
1303             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
1304             ewtabD           = _fjsp_setzero_v2r8();
1305             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
1306             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
1307             ewtabFn          = _fjsp_setzero_v2r8();
1308             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
1309             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
1310             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
1311             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
1312             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1313
1314             d                = _fjsp_sub_v2r8(r20,rswitch);
1315             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
1316             d2               = _fjsp_mul_v2r8(d,d);
1317             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
1318
1319             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
1320
1321             /* Evaluate switch function */
1322             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1323             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv20,_fjsp_mul_v2r8(velec,dsw)) );
1324             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1325
1326             fscal            = felec;
1327
1328             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1329
1330             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1331
1332             /* Update vectorial force */
1333             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1334             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1335             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1336             
1337             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1338             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1339             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1340
1341             }
1342
1343             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1344
1345             /* Inner loop uses 213 flops */
1346         }
1347
1348         /* End of innermost loop */
1349
1350         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1351                                               f+i_coord_offset,fshift+i_shift_offset);
1352
1353         /* Increment number of inner iterations */
1354         inneriter                  += j_index_end - j_index_start;
1355
1356         /* Outer loop uses 18 flops */
1357     }
1358
1359     /* Increment number of outer iterations */
1360     outeriter        += nri;
1361
1362     /* Update outer/inner flops */
1363
1364     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*213);
1365 }