Add C++ version of t_ilist
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     real             *ewtab;
94     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
95     real             rswitch_scalar,d_scalar;
96     _fjsp_v2r8       itab_tmp;
97     _fjsp_v2r8       dummy_mask,cutoff_mask;
98     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
99     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
100     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
101
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
122     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->ic->rcoulomb;
126     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
127     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->ic->rcoulomb_switch;
130     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = gmx_fjsp_set1_v2r8(d_scalar);
134     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _fjsp_setzero_v2r8();
167         fiy0             = _fjsp_setzero_v2r8();
168         fiz0             = _fjsp_setzero_v2r8();
169
170         /* Load parameters for i particles */
171         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _fjsp_setzero_v2r8();
176         vvdwsum          = _fjsp_setzero_v2r8();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _fjsp_sub_v2r8(ix0,jx0);
194             dy00             = _fjsp_sub_v2r8(iy0,jy0);
195             dz00             = _fjsp_sub_v2r8(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
199
200             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
201
202             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
214             {
215
216             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _fjsp_mul_v2r8(iq0,jq0);
220             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222
223             /* EWALD ELECTROSTATICS */
224
225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
226             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
227             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
228             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
229             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
230
231             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
232             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
233             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
234             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
235             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
236             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
237             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
238             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
239             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
240             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
241
242             /* LENNARD-JONES DISPERSION/REPULSION */
243
244             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
245             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
246             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
247             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
248             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
249
250             d                = _fjsp_sub_v2r8(r00,rswitch);
251             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
252             d2               = _fjsp_mul_v2r8(d,d);
253             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
254
255             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
256
257             /* Evaluate switch function */
258             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
259             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
260             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
261             velec            = _fjsp_mul_v2r8(velec,sw);
262             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
263             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
267             velecsum         = _fjsp_add_v2r8(velecsum,velec);
268             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
269             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
270
271             fscal            = _fjsp_add_v2r8(felec,fvdw);
272
273             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
274
275             /* Update vectorial force */
276             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
277             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
278             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
279             
280             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
281
282             }
283
284             /* Inner loop uses 86 flops */
285         }
286
287         if(jidx<j_index_end)
288         {
289
290             jnrA             = jjnr[jidx];
291             j_coord_offsetA  = DIM*jnrA;
292
293             /* load j atom coordinates */
294             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
295                                               &jx0,&jy0,&jz0);
296
297             /* Calculate displacement vector */
298             dx00             = _fjsp_sub_v2r8(ix0,jx0);
299             dy00             = _fjsp_sub_v2r8(iy0,jy0);
300             dz00             = _fjsp_sub_v2r8(iz0,jz0);
301
302             /* Calculate squared distance and things based on it */
303             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
304
305             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
306
307             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
308
309             /* Load parameters for j particles */
310             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
311             vdwjidx0A        = 2*vdwtype[jnrA+0];
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
318             {
319
320             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq00             = _fjsp_mul_v2r8(iq0,jq0);
324             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
325                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
331             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
332             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
333             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
334
335             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
336             ewtabD           = _fjsp_setzero_v2r8();
337             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
338             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
339             ewtabFn          = _fjsp_setzero_v2r8();
340             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
341             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
342             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
343             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
344             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
345
346             /* LENNARD-JONES DISPERSION/REPULSION */
347
348             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
349             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
350             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
351             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
352             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
353
354             d                = _fjsp_sub_v2r8(r00,rswitch);
355             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
356             d2               = _fjsp_mul_v2r8(d,d);
357             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
358
359             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
360
361             /* Evaluate switch function */
362             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
363             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
364             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
365             velec            = _fjsp_mul_v2r8(velec,sw);
366             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
367             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
371             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
372             velecsum         = _fjsp_add_v2r8(velecsum,velec);
373             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
374             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
375             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
376
377             fscal            = _fjsp_add_v2r8(felec,fvdw);
378
379             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
380
381             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
382
383             /* Update vectorial force */
384             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
385             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
386             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
387             
388             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
389
390             }
391
392             /* Inner loop uses 86 flops */
393         }
394
395         /* End of innermost loop */
396
397         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
398                                               f+i_coord_offset,fshift+i_shift_offset);
399
400         ggid                        = gid[iidx];
401         /* Update potential energies */
402         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
403         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
404
405         /* Increment number of inner iterations */
406         inneriter                  += j_index_end - j_index_start;
407
408         /* Outer loop uses 9 flops */
409     }
410
411     /* Increment number of outer iterations */
412     outeriter        += nri;
413
414     /* Update outer/inner flops */
415
416     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*86);
417 }
418 /*
419  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sparc64_hpc_ace_double
420  * Electrostatics interaction: Ewald
421  * VdW interaction:            LennardJones
422  * Geometry:                   Particle-Particle
423  * Calculate force/pot:        Force
424  */
425 void
426 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sparc64_hpc_ace_double
427                     (t_nblist                    * gmx_restrict       nlist,
428                      rvec                        * gmx_restrict          xx,
429                      rvec                        * gmx_restrict          ff,
430                      struct t_forcerec           * gmx_restrict          fr,
431                      t_mdatoms                   * gmx_restrict     mdatoms,
432                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
433                      t_nrnb                      * gmx_restrict        nrnb)
434 {
435     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
436      * just 0 for non-waters.
437      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
438      * jnr indices corresponding to data put in the four positions in the SIMD register.
439      */
440     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
441     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
442     int              jnrA,jnrB;
443     int              j_coord_offsetA,j_coord_offsetB;
444     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
445     real             rcutoff_scalar;
446     real             *shiftvec,*fshift,*x,*f;
447     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
448     int              vdwioffset0;
449     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
450     int              vdwjidx0A,vdwjidx0B;
451     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
452     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
453     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
454     real             *charge;
455     int              nvdwtype;
456     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
457     int              *vdwtype;
458     real             *vdwparam;
459     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
460     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
461     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
462     real             *ewtab;
463     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
464     real             rswitch_scalar,d_scalar;
465     _fjsp_v2r8       itab_tmp;
466     _fjsp_v2r8       dummy_mask,cutoff_mask;
467     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
468     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
469     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
470
471     x                = xx[0];
472     f                = ff[0];
473
474     nri              = nlist->nri;
475     iinr             = nlist->iinr;
476     jindex           = nlist->jindex;
477     jjnr             = nlist->jjnr;
478     shiftidx         = nlist->shift;
479     gid              = nlist->gid;
480     shiftvec         = fr->shift_vec[0];
481     fshift           = fr->fshift[0];
482     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
483     charge           = mdatoms->chargeA;
484     nvdwtype         = fr->ntype;
485     vdwparam         = fr->nbfp;
486     vdwtype          = mdatoms->typeA;
487
488     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
489     ewtab            = fr->ic->tabq_coul_FDV0;
490     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
491     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
492
493     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
494     rcutoff_scalar   = fr->ic->rcoulomb;
495     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
496     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
497
498     rswitch_scalar   = fr->ic->rcoulomb_switch;
499     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
500     /* Setup switch parameters */
501     d_scalar         = rcutoff_scalar-rswitch_scalar;
502     d                = gmx_fjsp_set1_v2r8(d_scalar);
503     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
504     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
505     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
506     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
507     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
508     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
509
510     /* Avoid stupid compiler warnings */
511     jnrA = jnrB = 0;
512     j_coord_offsetA = 0;
513     j_coord_offsetB = 0;
514
515     outeriter        = 0;
516     inneriter        = 0;
517
518     /* Start outer loop over neighborlists */
519     for(iidx=0; iidx<nri; iidx++)
520     {
521         /* Load shift vector for this list */
522         i_shift_offset   = DIM*shiftidx[iidx];
523
524         /* Load limits for loop over neighbors */
525         j_index_start    = jindex[iidx];
526         j_index_end      = jindex[iidx+1];
527
528         /* Get outer coordinate index */
529         inr              = iinr[iidx];
530         i_coord_offset   = DIM*inr;
531
532         /* Load i particle coords and add shift vector */
533         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
534
535         fix0             = _fjsp_setzero_v2r8();
536         fiy0             = _fjsp_setzero_v2r8();
537         fiz0             = _fjsp_setzero_v2r8();
538
539         /* Load parameters for i particles */
540         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
541         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
542
543         /* Start inner kernel loop */
544         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
545         {
546
547             /* Get j neighbor index, and coordinate index */
548             jnrA             = jjnr[jidx];
549             jnrB             = jjnr[jidx+1];
550             j_coord_offsetA  = DIM*jnrA;
551             j_coord_offsetB  = DIM*jnrB;
552
553             /* load j atom coordinates */
554             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
555                                               &jx0,&jy0,&jz0);
556
557             /* Calculate displacement vector */
558             dx00             = _fjsp_sub_v2r8(ix0,jx0);
559             dy00             = _fjsp_sub_v2r8(iy0,jy0);
560             dz00             = _fjsp_sub_v2r8(iz0,jz0);
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
564
565             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
566
567             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
568
569             /* Load parameters for j particles */
570             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
571             vdwjidx0A        = 2*vdwtype[jnrA+0];
572             vdwjidx0B        = 2*vdwtype[jnrB+0];
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
579             {
580
581             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq00             = _fjsp_mul_v2r8(iq0,jq0);
585             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
586                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
587
588             /* EWALD ELECTROSTATICS */
589
590             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
591             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
592             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
593             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
594             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
595
596             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
597             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
598             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
599             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
600             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
601             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
602             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
603             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
604             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
605             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
606
607             /* LENNARD-JONES DISPERSION/REPULSION */
608
609             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
610             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
611             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
612             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
613             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
614
615             d                = _fjsp_sub_v2r8(r00,rswitch);
616             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
617             d2               = _fjsp_mul_v2r8(d,d);
618             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
619
620             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
621
622             /* Evaluate switch function */
623             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
624             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
625             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
626             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
627
628             fscal            = _fjsp_add_v2r8(felec,fvdw);
629
630             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
631
632             /* Update vectorial force */
633             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
634             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
635             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
636             
637             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
638
639             }
640
641             /* Inner loop uses 80 flops */
642         }
643
644         if(jidx<j_index_end)
645         {
646
647             jnrA             = jjnr[jidx];
648             j_coord_offsetA  = DIM*jnrA;
649
650             /* load j atom coordinates */
651             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
652                                               &jx0,&jy0,&jz0);
653
654             /* Calculate displacement vector */
655             dx00             = _fjsp_sub_v2r8(ix0,jx0);
656             dy00             = _fjsp_sub_v2r8(iy0,jy0);
657             dz00             = _fjsp_sub_v2r8(iz0,jz0);
658
659             /* Calculate squared distance and things based on it */
660             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
661
662             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
663
664             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
665
666             /* Load parameters for j particles */
667             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
668             vdwjidx0A        = 2*vdwtype[jnrA+0];
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
675             {
676
677             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
678
679             /* Compute parameters for interactions between i and j atoms */
680             qq00             = _fjsp_mul_v2r8(iq0,jq0);
681             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
682                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
683
684             /* EWALD ELECTROSTATICS */
685
686             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
687             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
688             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
689             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
690             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
691
692             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
693             ewtabD           = _fjsp_setzero_v2r8();
694             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
695             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
696             ewtabFn          = _fjsp_setzero_v2r8();
697             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
698             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
699             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
700             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
701             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
702
703             /* LENNARD-JONES DISPERSION/REPULSION */
704
705             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
706             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
707             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
708             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
709             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
710
711             d                = _fjsp_sub_v2r8(r00,rswitch);
712             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
713             d2               = _fjsp_mul_v2r8(d,d);
714             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
715
716             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
717
718             /* Evaluate switch function */
719             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
720             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
721             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
722             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
723
724             fscal            = _fjsp_add_v2r8(felec,fvdw);
725
726             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
727
728             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
729
730             /* Update vectorial force */
731             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
732             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
733             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
734             
735             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
736
737             }
738
739             /* Inner loop uses 80 flops */
740         }
741
742         /* End of innermost loop */
743
744         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
745                                               f+i_coord_offset,fshift+i_shift_offset);
746
747         /* Increment number of inner iterations */
748         inneriter                  += j_index_end - j_index_start;
749
750         /* Outer loop uses 7 flops */
751     }
752
753     /* Increment number of outer iterations */
754     outeriter        += nri;
755
756     /* Update outer/inner flops */
757
758     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*80);
759 }