Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     real             *ewtab;
94     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
95     real             rswitch_scalar,d_scalar;
96     _fjsp_v2r8       itab_tmp;
97     _fjsp_v2r8       dummy_mask,cutoff_mask;
98     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
99     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
100     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
101
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
122     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
127     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->rcoulomb_switch;
130     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = gmx_fjsp_set1_v2r8(d_scalar);
134     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _fjsp_setzero_v2r8();
167         fiy0             = _fjsp_setzero_v2r8();
168         fiz0             = _fjsp_setzero_v2r8();
169
170         /* Load parameters for i particles */
171         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _fjsp_setzero_v2r8();
176         vvdwsum          = _fjsp_setzero_v2r8();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _fjsp_sub_v2r8(ix0,jx0);
194             dy00             = _fjsp_sub_v2r8(iy0,jy0);
195             dz00             = _fjsp_sub_v2r8(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
199
200             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
201
202             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
214             {
215
216             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _fjsp_mul_v2r8(iq0,jq0);
220             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222
223             /* EWALD ELECTROSTATICS */
224
225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
226             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
227             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
228             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
229             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
230
231             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
232             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
233             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
234             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
235             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
236             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
237             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
238             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
239             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
240             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
241
242             /* LENNARD-JONES DISPERSION/REPULSION */
243
244             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
245             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
246             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
247             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
248             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
249
250             d                = _fjsp_sub_v2r8(r00,rswitch);
251             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
252             d2               = _fjsp_mul_v2r8(d,d);
253             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
254
255             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
256
257             /* Evaluate switch function */
258             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
259             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
260             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
261             velec            = _fjsp_mul_v2r8(velec,sw);
262             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
263             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
267             velecsum         = _fjsp_add_v2r8(velecsum,velec);
268             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
269             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
270
271             fscal            = _fjsp_add_v2r8(felec,fvdw);
272
273             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
274
275             /* Update vectorial force */
276             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
277             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
278             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
279             
280             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
281
282             }
283
284             /* Inner loop uses 86 flops */
285         }
286
287         if(jidx<j_index_end)
288         {
289
290             jnrA             = jjnr[jidx];
291             j_coord_offsetA  = DIM*jnrA;
292
293             /* load j atom coordinates */
294             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
295                                               &jx0,&jy0,&jz0);
296
297             /* Calculate displacement vector */
298             dx00             = _fjsp_sub_v2r8(ix0,jx0);
299             dy00             = _fjsp_sub_v2r8(iy0,jy0);
300             dz00             = _fjsp_sub_v2r8(iz0,jz0);
301
302             /* Calculate squared distance and things based on it */
303             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
304
305             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
306
307             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
308
309             /* Load parameters for j particles */
310             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
311             vdwjidx0A        = 2*vdwtype[jnrA+0];
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
318             {
319
320             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq00             = _fjsp_mul_v2r8(iq0,jq0);
324             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
330             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
331             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
332             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
333
334             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
335             ewtabD           = _fjsp_setzero_v2r8();
336             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
337             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
338             ewtabFn          = _fjsp_setzero_v2r8();
339             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
340             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
341             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
342             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
343             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
344
345             /* LENNARD-JONES DISPERSION/REPULSION */
346
347             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
348             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
349             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
350             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
351             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
352
353             d                = _fjsp_sub_v2r8(r00,rswitch);
354             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
355             d2               = _fjsp_mul_v2r8(d,d);
356             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
357
358             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
359
360             /* Evaluate switch function */
361             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
362             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
363             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
364             velec            = _fjsp_mul_v2r8(velec,sw);
365             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
366             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
370             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
371             velecsum         = _fjsp_add_v2r8(velecsum,velec);
372             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
373             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
374             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
375
376             fscal            = _fjsp_add_v2r8(felec,fvdw);
377
378             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
379
380             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
381
382             /* Update vectorial force */
383             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
384             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
385             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
386             
387             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
388
389             }
390
391             /* Inner loop uses 86 flops */
392         }
393
394         /* End of innermost loop */
395
396         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
397                                               f+i_coord_offset,fshift+i_shift_offset);
398
399         ggid                        = gid[iidx];
400         /* Update potential energies */
401         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
402         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
403
404         /* Increment number of inner iterations */
405         inneriter                  += j_index_end - j_index_start;
406
407         /* Outer loop uses 9 flops */
408     }
409
410     /* Increment number of outer iterations */
411     outeriter        += nri;
412
413     /* Update outer/inner flops */
414
415     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*86);
416 }
417 /*
418  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sparc64_hpc_ace_double
419  * Electrostatics interaction: Ewald
420  * VdW interaction:            LennardJones
421  * Geometry:                   Particle-Particle
422  * Calculate force/pot:        Force
423  */
424 void
425 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sparc64_hpc_ace_double
426                     (t_nblist                    * gmx_restrict       nlist,
427                      rvec                        * gmx_restrict          xx,
428                      rvec                        * gmx_restrict          ff,
429                      t_forcerec                  * gmx_restrict          fr,
430                      t_mdatoms                   * gmx_restrict     mdatoms,
431                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
432                      t_nrnb                      * gmx_restrict        nrnb)
433 {
434     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
435      * just 0 for non-waters.
436      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
437      * jnr indices corresponding to data put in the four positions in the SIMD register.
438      */
439     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
440     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
441     int              jnrA,jnrB;
442     int              j_coord_offsetA,j_coord_offsetB;
443     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
444     real             rcutoff_scalar;
445     real             *shiftvec,*fshift,*x,*f;
446     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
447     int              vdwioffset0;
448     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
449     int              vdwjidx0A,vdwjidx0B;
450     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
451     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
452     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
453     real             *charge;
454     int              nvdwtype;
455     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
456     int              *vdwtype;
457     real             *vdwparam;
458     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
459     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
460     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
461     real             *ewtab;
462     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
463     real             rswitch_scalar,d_scalar;
464     _fjsp_v2r8       itab_tmp;
465     _fjsp_v2r8       dummy_mask,cutoff_mask;
466     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
467     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
468     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
469
470     x                = xx[0];
471     f                = ff[0];
472
473     nri              = nlist->nri;
474     iinr             = nlist->iinr;
475     jindex           = nlist->jindex;
476     jjnr             = nlist->jjnr;
477     shiftidx         = nlist->shift;
478     gid              = nlist->gid;
479     shiftvec         = fr->shift_vec[0];
480     fshift           = fr->fshift[0];
481     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
482     charge           = mdatoms->chargeA;
483     nvdwtype         = fr->ntype;
484     vdwparam         = fr->nbfp;
485     vdwtype          = mdatoms->typeA;
486
487     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
488     ewtab            = fr->ic->tabq_coul_FDV0;
489     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
490     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
491
492     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
493     rcutoff_scalar   = fr->rcoulomb;
494     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
495     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
496
497     rswitch_scalar   = fr->rcoulomb_switch;
498     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
499     /* Setup switch parameters */
500     d_scalar         = rcutoff_scalar-rswitch_scalar;
501     d                = gmx_fjsp_set1_v2r8(d_scalar);
502     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
503     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
504     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
505     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
506     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
507     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
508
509     /* Avoid stupid compiler warnings */
510     jnrA = jnrB = 0;
511     j_coord_offsetA = 0;
512     j_coord_offsetB = 0;
513
514     outeriter        = 0;
515     inneriter        = 0;
516
517     /* Start outer loop over neighborlists */
518     for(iidx=0; iidx<nri; iidx++)
519     {
520         /* Load shift vector for this list */
521         i_shift_offset   = DIM*shiftidx[iidx];
522
523         /* Load limits for loop over neighbors */
524         j_index_start    = jindex[iidx];
525         j_index_end      = jindex[iidx+1];
526
527         /* Get outer coordinate index */
528         inr              = iinr[iidx];
529         i_coord_offset   = DIM*inr;
530
531         /* Load i particle coords and add shift vector */
532         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
533
534         fix0             = _fjsp_setzero_v2r8();
535         fiy0             = _fjsp_setzero_v2r8();
536         fiz0             = _fjsp_setzero_v2r8();
537
538         /* Load parameters for i particles */
539         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
540         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
541
542         /* Start inner kernel loop */
543         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
544         {
545
546             /* Get j neighbor index, and coordinate index */
547             jnrA             = jjnr[jidx];
548             jnrB             = jjnr[jidx+1];
549             j_coord_offsetA  = DIM*jnrA;
550             j_coord_offsetB  = DIM*jnrB;
551
552             /* load j atom coordinates */
553             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
554                                               &jx0,&jy0,&jz0);
555
556             /* Calculate displacement vector */
557             dx00             = _fjsp_sub_v2r8(ix0,jx0);
558             dy00             = _fjsp_sub_v2r8(iy0,jy0);
559             dz00             = _fjsp_sub_v2r8(iz0,jz0);
560
561             /* Calculate squared distance and things based on it */
562             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
563
564             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
565
566             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
567
568             /* Load parameters for j particles */
569             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571             vdwjidx0B        = 2*vdwtype[jnrB+0];
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
578             {
579
580             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq00             = _fjsp_mul_v2r8(iq0,jq0);
584             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
585                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
586
587             /* EWALD ELECTROSTATICS */
588
589             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
590             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
591             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
592             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
593             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
594
595             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
596             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
597             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
598             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
599             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
600             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
601             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
602             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
603             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
604             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
605
606             /* LENNARD-JONES DISPERSION/REPULSION */
607
608             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
609             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
610             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
611             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
612             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
613
614             d                = _fjsp_sub_v2r8(r00,rswitch);
615             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
616             d2               = _fjsp_mul_v2r8(d,d);
617             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
618
619             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
620
621             /* Evaluate switch function */
622             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
623             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
624             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
625             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
626
627             fscal            = _fjsp_add_v2r8(felec,fvdw);
628
629             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
630
631             /* Update vectorial force */
632             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
633             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
634             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
635             
636             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
637
638             }
639
640             /* Inner loop uses 80 flops */
641         }
642
643         if(jidx<j_index_end)
644         {
645
646             jnrA             = jjnr[jidx];
647             j_coord_offsetA  = DIM*jnrA;
648
649             /* load j atom coordinates */
650             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
651                                               &jx0,&jy0,&jz0);
652
653             /* Calculate displacement vector */
654             dx00             = _fjsp_sub_v2r8(ix0,jx0);
655             dy00             = _fjsp_sub_v2r8(iy0,jy0);
656             dz00             = _fjsp_sub_v2r8(iz0,jz0);
657
658             /* Calculate squared distance and things based on it */
659             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
660
661             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
662
663             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
664
665             /* Load parameters for j particles */
666             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
667             vdwjidx0A        = 2*vdwtype[jnrA+0];
668
669             /**************************
670              * CALCULATE INTERACTIONS *
671              **************************/
672
673             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
674             {
675
676             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
677
678             /* Compute parameters for interactions between i and j atoms */
679             qq00             = _fjsp_mul_v2r8(iq0,jq0);
680             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
681
682             /* EWALD ELECTROSTATICS */
683
684             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
685             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
686             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
687             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
688             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
689
690             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
691             ewtabD           = _fjsp_setzero_v2r8();
692             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
693             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
694             ewtabFn          = _fjsp_setzero_v2r8();
695             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
696             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
697             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
698             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
699             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
700
701             /* LENNARD-JONES DISPERSION/REPULSION */
702
703             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
704             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
705             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
706             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
707             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
708
709             d                = _fjsp_sub_v2r8(r00,rswitch);
710             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
711             d2               = _fjsp_mul_v2r8(d,d);
712             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
713
714             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
715
716             /* Evaluate switch function */
717             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
718             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
719             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
720             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
721
722             fscal            = _fjsp_add_v2r8(felec,fvdw);
723
724             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
725
726             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
727
728             /* Update vectorial force */
729             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
730             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
731             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
732             
733             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
734
735             }
736
737             /* Inner loop uses 80 flops */
738         }
739
740         /* End of innermost loop */
741
742         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
743                                               f+i_coord_offset,fshift+i_shift_offset);
744
745         /* Increment number of inner iterations */
746         inneriter                  += j_index_end - j_index_start;
747
748         /* Outer loop uses 7 flops */
749     }
750
751     /* Increment number of outer iterations */
752     outeriter        += nri;
753
754     /* Update outer/inner flops */
755
756     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*80);
757 }