Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LennardJones
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
93     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
94     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     _fjsp_v2r8       itab_tmp;
99     _fjsp_v2r8       dummy_mask,cutoff_mask;
100     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
101     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
102     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
103
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
124     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
129     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->rcoulomb_switch;
132     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = gmx_fjsp_set1_v2r8(d_scalar);
136     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _fjsp_setzero_v2r8();
169         fiy0             = _fjsp_setzero_v2r8();
170         fiz0             = _fjsp_setzero_v2r8();
171
172         /* Load parameters for i particles */
173         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
174         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _fjsp_setzero_v2r8();
178         vvdwsum          = _fjsp_setzero_v2r8();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _fjsp_sub_v2r8(ix0,jx0);
196             dy00             = _fjsp_sub_v2r8(iy0,jy0);
197             dz00             = _fjsp_sub_v2r8(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
201
202             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
203
204             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
216             {
217
218             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _fjsp_mul_v2r8(iq0,jq0);
222             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
223                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
224
225             /* EWALD ELECTROSTATICS */
226
227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
228             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
229             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
230             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
231             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
232
233             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
234             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
235             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
236             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
237             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
238             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
239             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
240             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
241             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
242             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
243
244             /* LENNARD-JONES DISPERSION/REPULSION */
245
246             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
247             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
248             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
249             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
250             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
251
252             d                = _fjsp_sub_v2r8(r00,rswitch);
253             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
254             d2               = _fjsp_mul_v2r8(d,d);
255             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
256
257             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
258
259             /* Evaluate switch function */
260             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
261             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
262             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
263             velec            = _fjsp_mul_v2r8(velec,sw);
264             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
265             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
269             velecsum         = _fjsp_add_v2r8(velecsum,velec);
270             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
271             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
272
273             fscal            = _fjsp_add_v2r8(felec,fvdw);
274
275             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
276
277             /* Update vectorial force */
278             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
279             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
280             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
281             
282             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
283
284             }
285
286             /* Inner loop uses 86 flops */
287         }
288
289         if(jidx<j_index_end)
290         {
291
292             jnrA             = jjnr[jidx];
293             j_coord_offsetA  = DIM*jnrA;
294
295             /* load j atom coordinates */
296             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
297                                               &jx0,&jy0,&jz0);
298
299             /* Calculate displacement vector */
300             dx00             = _fjsp_sub_v2r8(ix0,jx0);
301             dy00             = _fjsp_sub_v2r8(iy0,jy0);
302             dz00             = _fjsp_sub_v2r8(iz0,jz0);
303
304             /* Calculate squared distance and things based on it */
305             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
306
307             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
308
309             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
310
311             /* Load parameters for j particles */
312             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
313             vdwjidx0A        = 2*vdwtype[jnrA+0];
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
320             {
321
322             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq00             = _fjsp_mul_v2r8(iq0,jq0);
326             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
327                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
333             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
334             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
335             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
336
337             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
338             ewtabD           = _fjsp_setzero_v2r8();
339             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
340             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
341             ewtabFn          = _fjsp_setzero_v2r8();
342             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
343             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
344             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
345             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
346             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
347
348             /* LENNARD-JONES DISPERSION/REPULSION */
349
350             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
351             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
352             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
353             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
354             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
355
356             d                = _fjsp_sub_v2r8(r00,rswitch);
357             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
358             d2               = _fjsp_mul_v2r8(d,d);
359             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
360
361             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
362
363             /* Evaluate switch function */
364             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
365             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
366             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
367             velec            = _fjsp_mul_v2r8(velec,sw);
368             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
369             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
373             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
374             velecsum         = _fjsp_add_v2r8(velecsum,velec);
375             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
376             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
377             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
378
379             fscal            = _fjsp_add_v2r8(felec,fvdw);
380
381             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
382
383             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
384
385             /* Update vectorial force */
386             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
387             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
388             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
389             
390             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
391
392             }
393
394             /* Inner loop uses 86 flops */
395         }
396
397         /* End of innermost loop */
398
399         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
400                                               f+i_coord_offset,fshift+i_shift_offset);
401
402         ggid                        = gid[iidx];
403         /* Update potential energies */
404         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
405         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
406
407         /* Increment number of inner iterations */
408         inneriter                  += j_index_end - j_index_start;
409
410         /* Outer loop uses 9 flops */
411     }
412
413     /* Increment number of outer iterations */
414     outeriter        += nri;
415
416     /* Update outer/inner flops */
417
418     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*86);
419 }
420 /*
421  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sparc64_hpc_ace_double
422  * Electrostatics interaction: Ewald
423  * VdW interaction:            LennardJones
424  * Geometry:                   Particle-Particle
425  * Calculate force/pot:        Force
426  */
427 void
428 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sparc64_hpc_ace_double
429                     (t_nblist                    * gmx_restrict       nlist,
430                      rvec                        * gmx_restrict          xx,
431                      rvec                        * gmx_restrict          ff,
432                      t_forcerec                  * gmx_restrict          fr,
433                      t_mdatoms                   * gmx_restrict     mdatoms,
434                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
435                      t_nrnb                      * gmx_restrict        nrnb)
436 {
437     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
438      * just 0 for non-waters.
439      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
440      * jnr indices corresponding to data put in the four positions in the SIMD register.
441      */
442     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
443     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
444     int              jnrA,jnrB;
445     int              j_coord_offsetA,j_coord_offsetB;
446     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
447     real             rcutoff_scalar;
448     real             *shiftvec,*fshift,*x,*f;
449     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
450     int              vdwioffset0;
451     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
452     int              vdwjidx0A,vdwjidx0B;
453     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
454     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
455     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
456     real             *charge;
457     int              nvdwtype;
458     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
459     int              *vdwtype;
460     real             *vdwparam;
461     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
462     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
463     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
464     real             *ewtab;
465     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
466     real             rswitch_scalar,d_scalar;
467     _fjsp_v2r8       itab_tmp;
468     _fjsp_v2r8       dummy_mask,cutoff_mask;
469     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
470     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
471     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
472
473     x                = xx[0];
474     f                = ff[0];
475
476     nri              = nlist->nri;
477     iinr             = nlist->iinr;
478     jindex           = nlist->jindex;
479     jjnr             = nlist->jjnr;
480     shiftidx         = nlist->shift;
481     gid              = nlist->gid;
482     shiftvec         = fr->shift_vec[0];
483     fshift           = fr->fshift[0];
484     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
485     charge           = mdatoms->chargeA;
486     nvdwtype         = fr->ntype;
487     vdwparam         = fr->nbfp;
488     vdwtype          = mdatoms->typeA;
489
490     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
491     ewtab            = fr->ic->tabq_coul_FDV0;
492     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
493     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
494
495     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
496     rcutoff_scalar   = fr->rcoulomb;
497     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
498     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
499
500     rswitch_scalar   = fr->rcoulomb_switch;
501     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
502     /* Setup switch parameters */
503     d_scalar         = rcutoff_scalar-rswitch_scalar;
504     d                = gmx_fjsp_set1_v2r8(d_scalar);
505     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
506     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
507     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
508     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
509     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
510     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
511
512     /* Avoid stupid compiler warnings */
513     jnrA = jnrB = 0;
514     j_coord_offsetA = 0;
515     j_coord_offsetB = 0;
516
517     outeriter        = 0;
518     inneriter        = 0;
519
520     /* Start outer loop over neighborlists */
521     for(iidx=0; iidx<nri; iidx++)
522     {
523         /* Load shift vector for this list */
524         i_shift_offset   = DIM*shiftidx[iidx];
525
526         /* Load limits for loop over neighbors */
527         j_index_start    = jindex[iidx];
528         j_index_end      = jindex[iidx+1];
529
530         /* Get outer coordinate index */
531         inr              = iinr[iidx];
532         i_coord_offset   = DIM*inr;
533
534         /* Load i particle coords and add shift vector */
535         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
536
537         fix0             = _fjsp_setzero_v2r8();
538         fiy0             = _fjsp_setzero_v2r8();
539         fiz0             = _fjsp_setzero_v2r8();
540
541         /* Load parameters for i particles */
542         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
543         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
544
545         /* Start inner kernel loop */
546         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
547         {
548
549             /* Get j neighbor index, and coordinate index */
550             jnrA             = jjnr[jidx];
551             jnrB             = jjnr[jidx+1];
552             j_coord_offsetA  = DIM*jnrA;
553             j_coord_offsetB  = DIM*jnrB;
554
555             /* load j atom coordinates */
556             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
557                                               &jx0,&jy0,&jz0);
558
559             /* Calculate displacement vector */
560             dx00             = _fjsp_sub_v2r8(ix0,jx0);
561             dy00             = _fjsp_sub_v2r8(iy0,jy0);
562             dz00             = _fjsp_sub_v2r8(iz0,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
566
567             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
568
569             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
570
571             /* Load parameters for j particles */
572             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
573             vdwjidx0A        = 2*vdwtype[jnrA+0];
574             vdwjidx0B        = 2*vdwtype[jnrB+0];
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
581             {
582
583             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq00             = _fjsp_mul_v2r8(iq0,jq0);
587             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
588                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
589
590             /* EWALD ELECTROSTATICS */
591
592             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
593             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
594             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
595             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
596             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
597
598             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
599             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
600             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
601             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
602             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
603             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
604             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
605             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
606             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
607             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
608
609             /* LENNARD-JONES DISPERSION/REPULSION */
610
611             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
612             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
613             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
614             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
615             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
616
617             d                = _fjsp_sub_v2r8(r00,rswitch);
618             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
619             d2               = _fjsp_mul_v2r8(d,d);
620             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
621
622             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
623
624             /* Evaluate switch function */
625             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
626             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
627             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
628             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
629
630             fscal            = _fjsp_add_v2r8(felec,fvdw);
631
632             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
633
634             /* Update vectorial force */
635             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
636             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
637             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
638             
639             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
640
641             }
642
643             /* Inner loop uses 80 flops */
644         }
645
646         if(jidx<j_index_end)
647         {
648
649             jnrA             = jjnr[jidx];
650             j_coord_offsetA  = DIM*jnrA;
651
652             /* load j atom coordinates */
653             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
654                                               &jx0,&jy0,&jz0);
655
656             /* Calculate displacement vector */
657             dx00             = _fjsp_sub_v2r8(ix0,jx0);
658             dy00             = _fjsp_sub_v2r8(iy0,jy0);
659             dz00             = _fjsp_sub_v2r8(iz0,jz0);
660
661             /* Calculate squared distance and things based on it */
662             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
663
664             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
665
666             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
667
668             /* Load parameters for j particles */
669             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
670             vdwjidx0A        = 2*vdwtype[jnrA+0];
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
677             {
678
679             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
680
681             /* Compute parameters for interactions between i and j atoms */
682             qq00             = _fjsp_mul_v2r8(iq0,jq0);
683             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
684                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
685
686             /* EWALD ELECTROSTATICS */
687
688             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
689             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
690             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
691             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
692             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
693
694             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
695             ewtabD           = _fjsp_setzero_v2r8();
696             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
697             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
698             ewtabFn          = _fjsp_setzero_v2r8();
699             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
700             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
701             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
702             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
703             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
704
705             /* LENNARD-JONES DISPERSION/REPULSION */
706
707             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
708             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
709             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
710             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
711             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
712
713             d                = _fjsp_sub_v2r8(r00,rswitch);
714             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
715             d2               = _fjsp_mul_v2r8(d,d);
716             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
717
718             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
719
720             /* Evaluate switch function */
721             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
722             felec            = _fjsp_msub_v2r8( felec,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(velec,dsw)) );
723             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
724             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
725
726             fscal            = _fjsp_add_v2r8(felec,fvdw);
727
728             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
729
730             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
731
732             /* Update vectorial force */
733             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
734             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
735             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
736             
737             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
738
739             }
740
741             /* Inner loop uses 80 flops */
742         }
743
744         /* End of innermost loop */
745
746         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
747                                               f+i_coord_offset,fshift+i_shift_offset);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 7 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*80);
761 }