Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     _fjsp_v2r8       itab_tmp;
101     _fjsp_v2r8       dummy_mask,cutoff_mask;
102     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
103     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
104     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
105
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
126     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
131     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
132     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->rcoulomb;
137     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
138     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
139
140     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
141     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
168
169         fix0             = _fjsp_setzero_v2r8();
170         fiy0             = _fjsp_setzero_v2r8();
171         fiz0             = _fjsp_setzero_v2r8();
172         fix1             = _fjsp_setzero_v2r8();
173         fiy1             = _fjsp_setzero_v2r8();
174         fiz1             = _fjsp_setzero_v2r8();
175         fix2             = _fjsp_setzero_v2r8();
176         fiy2             = _fjsp_setzero_v2r8();
177         fiz2             = _fjsp_setzero_v2r8();
178
179         /* Reset potential sums */
180         velecsum         = _fjsp_setzero_v2r8();
181         vvdwsum          = _fjsp_setzero_v2r8();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _fjsp_sub_v2r8(ix0,jx0);
199             dy00             = _fjsp_sub_v2r8(iy0,jy0);
200             dz00             = _fjsp_sub_v2r8(iz0,jz0);
201             dx10             = _fjsp_sub_v2r8(ix1,jx0);
202             dy10             = _fjsp_sub_v2r8(iy1,jy0);
203             dz10             = _fjsp_sub_v2r8(iz1,jz0);
204             dx20             = _fjsp_sub_v2r8(ix2,jx0);
205             dy20             = _fjsp_sub_v2r8(iy2,jy0);
206             dz20             = _fjsp_sub_v2r8(iz2,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
210             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
211             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
212
213             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
214             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
215             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
216
217             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
218             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
219             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225
226             fjx0             = _fjsp_setzero_v2r8();
227             fjy0             = _fjsp_setzero_v2r8();
228             fjz0             = _fjsp_setzero_v2r8();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
235             {
236
237             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _fjsp_mul_v2r8(iq0,jq0);
241             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
243
244             /* EWALD ELECTROSTATICS */
245
246             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
247             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
248             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
249             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
250             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
251
252             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
253             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
254             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
255             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
256             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
257             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
258             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
259             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
260             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
261             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
262
263             /* LENNARD-JONES DISPERSION/REPULSION */
264
265             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
266             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
267             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
268             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
269                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
270             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
271
272             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
276             velecsum         = _fjsp_add_v2r8(velecsum,velec);
277             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
278             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
279
280             fscal            = _fjsp_add_v2r8(felec,fvdw);
281
282             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
283
284             /* Update vectorial force */
285             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
286             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
287             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
288             
289             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
290             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
291             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
292
293             }
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
300             {
301
302             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _fjsp_mul_v2r8(iq1,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
311             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
312             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
313             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
314
315             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
316             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
317             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
318             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
319             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
320             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
321             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
322             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
323             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
324             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
325
326             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
330             velecsum         = _fjsp_add_v2r8(velecsum,velec);
331
332             fscal            = felec;
333
334             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
335
336             /* Update vectorial force */
337             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
338             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
339             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
340             
341             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
342             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
343             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
344
345             }
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
352             {
353
354             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq20             = _fjsp_mul_v2r8(iq2,jq0);
358
359             /* EWALD ELECTROSTATICS */
360
361             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
362             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
363             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
364             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
365             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
366
367             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
368             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
369             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
370             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
371             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
372             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
373             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
374             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
375             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
376             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
377
378             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
382             velecsum         = _fjsp_add_v2r8(velecsum,velec);
383
384             fscal            = felec;
385
386             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
387
388             /* Update vectorial force */
389             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
390             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
391             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
392             
393             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
394             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
395             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
396
397             }
398
399             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
400
401             /* Inner loop uses 168 flops */
402         }
403
404         if(jidx<j_index_end)
405         {
406
407             jnrA             = jjnr[jidx];
408             j_coord_offsetA  = DIM*jnrA;
409
410             /* load j atom coordinates */
411             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
412                                               &jx0,&jy0,&jz0);
413
414             /* Calculate displacement vector */
415             dx00             = _fjsp_sub_v2r8(ix0,jx0);
416             dy00             = _fjsp_sub_v2r8(iy0,jy0);
417             dz00             = _fjsp_sub_v2r8(iz0,jz0);
418             dx10             = _fjsp_sub_v2r8(ix1,jx0);
419             dy10             = _fjsp_sub_v2r8(iy1,jy0);
420             dz10             = _fjsp_sub_v2r8(iz1,jz0);
421             dx20             = _fjsp_sub_v2r8(ix2,jx0);
422             dy20             = _fjsp_sub_v2r8(iy2,jy0);
423             dz20             = _fjsp_sub_v2r8(iz2,jz0);
424
425             /* Calculate squared distance and things based on it */
426             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
427             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
428             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
429
430             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
431             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
432             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
433
434             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
435             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
436             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
437
438             /* Load parameters for j particles */
439             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
440             vdwjidx0A        = 2*vdwtype[jnrA+0];
441
442             fjx0             = _fjsp_setzero_v2r8();
443             fjy0             = _fjsp_setzero_v2r8();
444             fjz0             = _fjsp_setzero_v2r8();
445
446             /**************************
447              * CALCULATE INTERACTIONS *
448              **************************/
449
450             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
451             {
452
453             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
454
455             /* Compute parameters for interactions between i and j atoms */
456             qq00             = _fjsp_mul_v2r8(iq0,jq0);
457             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
458
459             /* EWALD ELECTROSTATICS */
460
461             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
462             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
463             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
464             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
465             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
466
467             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
468             ewtabD           = _fjsp_setzero_v2r8();
469             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
470             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
471             ewtabFn          = _fjsp_setzero_v2r8();
472             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
473             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
474             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
475             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
476             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
477
478             /* LENNARD-JONES DISPERSION/REPULSION */
479
480             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
481             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
482             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
483             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
484                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
485             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
486
487             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
488
489             /* Update potential sum for this i atom from the interaction with this j atom. */
490             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
491             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
492             velecsum         = _fjsp_add_v2r8(velecsum,velec);
493             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
494             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
495             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
496
497             fscal            = _fjsp_add_v2r8(felec,fvdw);
498
499             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
500
501             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
502
503             /* Update vectorial force */
504             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
505             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
506             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
507             
508             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
509             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
510             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
511
512             }
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
519             {
520
521             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
522
523             /* Compute parameters for interactions between i and j atoms */
524             qq10             = _fjsp_mul_v2r8(iq1,jq0);
525
526             /* EWALD ELECTROSTATICS */
527
528             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
529             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
530             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
531             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
532             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
533
534             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
535             ewtabD           = _fjsp_setzero_v2r8();
536             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
537             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
538             ewtabFn          = _fjsp_setzero_v2r8();
539             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
540             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
541             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
542             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
543             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
544
545             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
546
547             /* Update potential sum for this i atom from the interaction with this j atom. */
548             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
549             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
550             velecsum         = _fjsp_add_v2r8(velecsum,velec);
551
552             fscal            = felec;
553
554             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
555
556             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
557
558             /* Update vectorial force */
559             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
560             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
561             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
562             
563             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
564             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
565             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
566
567             }
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
574             {
575
576             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq20             = _fjsp_mul_v2r8(iq2,jq0);
580
581             /* EWALD ELECTROSTATICS */
582
583             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
584             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
585             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
586             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
587             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
588
589             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
590             ewtabD           = _fjsp_setzero_v2r8();
591             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
592             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
593             ewtabFn          = _fjsp_setzero_v2r8();
594             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
595             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
596             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
597             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
598             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
599
600             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
604             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
605             velecsum         = _fjsp_add_v2r8(velecsum,velec);
606
607             fscal            = felec;
608
609             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
610
611             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
612
613             /* Update vectorial force */
614             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
615             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
616             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
617             
618             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
619             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
620             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
621
622             }
623
624             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
625
626             /* Inner loop uses 168 flops */
627         }
628
629         /* End of innermost loop */
630
631         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
632                                               f+i_coord_offset,fshift+i_shift_offset);
633
634         ggid                        = gid[iidx];
635         /* Update potential energies */
636         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
637         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
638
639         /* Increment number of inner iterations */
640         inneriter                  += j_index_end - j_index_start;
641
642         /* Outer loop uses 20 flops */
643     }
644
645     /* Increment number of outer iterations */
646     outeriter        += nri;
647
648     /* Update outer/inner flops */
649
650     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*168);
651 }
652 /*
653  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sparc64_hpc_ace_double
654  * Electrostatics interaction: Ewald
655  * VdW interaction:            LennardJones
656  * Geometry:                   Water3-Particle
657  * Calculate force/pot:        Force
658  */
659 void
660 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sparc64_hpc_ace_double
661                     (t_nblist                    * gmx_restrict       nlist,
662                      rvec                        * gmx_restrict          xx,
663                      rvec                        * gmx_restrict          ff,
664                      t_forcerec                  * gmx_restrict          fr,
665                      t_mdatoms                   * gmx_restrict     mdatoms,
666                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
667                      t_nrnb                      * gmx_restrict        nrnb)
668 {
669     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
670      * just 0 for non-waters.
671      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
672      * jnr indices corresponding to data put in the four positions in the SIMD register.
673      */
674     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
675     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
676     int              jnrA,jnrB;
677     int              j_coord_offsetA,j_coord_offsetB;
678     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
679     real             rcutoff_scalar;
680     real             *shiftvec,*fshift,*x,*f;
681     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
682     int              vdwioffset0;
683     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
684     int              vdwioffset1;
685     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
686     int              vdwioffset2;
687     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
688     int              vdwjidx0A,vdwjidx0B;
689     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
690     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
691     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
692     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
693     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
694     real             *charge;
695     int              nvdwtype;
696     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
697     int              *vdwtype;
698     real             *vdwparam;
699     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
700     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
701     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
702     real             *ewtab;
703     _fjsp_v2r8       itab_tmp;
704     _fjsp_v2r8       dummy_mask,cutoff_mask;
705     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
706     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
707     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
708
709     x                = xx[0];
710     f                = ff[0];
711
712     nri              = nlist->nri;
713     iinr             = nlist->iinr;
714     jindex           = nlist->jindex;
715     jjnr             = nlist->jjnr;
716     shiftidx         = nlist->shift;
717     gid              = nlist->gid;
718     shiftvec         = fr->shift_vec[0];
719     fshift           = fr->fshift[0];
720     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
721     charge           = mdatoms->chargeA;
722     nvdwtype         = fr->ntype;
723     vdwparam         = fr->nbfp;
724     vdwtype          = mdatoms->typeA;
725
726     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
727     ewtab            = fr->ic->tabq_coul_F;
728     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
729     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
730
731     /* Setup water-specific parameters */
732     inr              = nlist->iinr[0];
733     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
734     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
735     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
736     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
737
738     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
739     rcutoff_scalar   = fr->rcoulomb;
740     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
741     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
742
743     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
744     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
745
746     /* Avoid stupid compiler warnings */
747     jnrA = jnrB = 0;
748     j_coord_offsetA = 0;
749     j_coord_offsetB = 0;
750
751     outeriter        = 0;
752     inneriter        = 0;
753
754     /* Start outer loop over neighborlists */
755     for(iidx=0; iidx<nri; iidx++)
756     {
757         /* Load shift vector for this list */
758         i_shift_offset   = DIM*shiftidx[iidx];
759
760         /* Load limits for loop over neighbors */
761         j_index_start    = jindex[iidx];
762         j_index_end      = jindex[iidx+1];
763
764         /* Get outer coordinate index */
765         inr              = iinr[iidx];
766         i_coord_offset   = DIM*inr;
767
768         /* Load i particle coords and add shift vector */
769         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
770                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
771
772         fix0             = _fjsp_setzero_v2r8();
773         fiy0             = _fjsp_setzero_v2r8();
774         fiz0             = _fjsp_setzero_v2r8();
775         fix1             = _fjsp_setzero_v2r8();
776         fiy1             = _fjsp_setzero_v2r8();
777         fiz1             = _fjsp_setzero_v2r8();
778         fix2             = _fjsp_setzero_v2r8();
779         fiy2             = _fjsp_setzero_v2r8();
780         fiz2             = _fjsp_setzero_v2r8();
781
782         /* Start inner kernel loop */
783         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
784         {
785
786             /* Get j neighbor index, and coordinate index */
787             jnrA             = jjnr[jidx];
788             jnrB             = jjnr[jidx+1];
789             j_coord_offsetA  = DIM*jnrA;
790             j_coord_offsetB  = DIM*jnrB;
791
792             /* load j atom coordinates */
793             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
794                                               &jx0,&jy0,&jz0);
795
796             /* Calculate displacement vector */
797             dx00             = _fjsp_sub_v2r8(ix0,jx0);
798             dy00             = _fjsp_sub_v2r8(iy0,jy0);
799             dz00             = _fjsp_sub_v2r8(iz0,jz0);
800             dx10             = _fjsp_sub_v2r8(ix1,jx0);
801             dy10             = _fjsp_sub_v2r8(iy1,jy0);
802             dz10             = _fjsp_sub_v2r8(iz1,jz0);
803             dx20             = _fjsp_sub_v2r8(ix2,jx0);
804             dy20             = _fjsp_sub_v2r8(iy2,jy0);
805             dz20             = _fjsp_sub_v2r8(iz2,jz0);
806
807             /* Calculate squared distance and things based on it */
808             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
809             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
810             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
811
812             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
813             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
814             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
815
816             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
817             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
818             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
819
820             /* Load parameters for j particles */
821             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
822             vdwjidx0A        = 2*vdwtype[jnrA+0];
823             vdwjidx0B        = 2*vdwtype[jnrB+0];
824
825             fjx0             = _fjsp_setzero_v2r8();
826             fjy0             = _fjsp_setzero_v2r8();
827             fjz0             = _fjsp_setzero_v2r8();
828
829             /**************************
830              * CALCULATE INTERACTIONS *
831              **************************/
832
833             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
834             {
835
836             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
837
838             /* Compute parameters for interactions between i and j atoms */
839             qq00             = _fjsp_mul_v2r8(iq0,jq0);
840             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
841                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
842
843             /* EWALD ELECTROSTATICS */
844
845             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
846             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
847             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
848             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
849             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
850
851             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
852                                          &ewtabF,&ewtabFn);
853             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
854             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
855
856             /* LENNARD-JONES DISPERSION/REPULSION */
857
858             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
859             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
860
861             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
862
863             fscal            = _fjsp_add_v2r8(felec,fvdw);
864
865             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
866
867             /* Update vectorial force */
868             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
869             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
870             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
871             
872             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
873             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
874             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
875
876             }
877
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
883             {
884
885             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
886
887             /* Compute parameters for interactions between i and j atoms */
888             qq10             = _fjsp_mul_v2r8(iq1,jq0);
889
890             /* EWALD ELECTROSTATICS */
891
892             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
893             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
894             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
895             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
896             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
897
898             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
899                                          &ewtabF,&ewtabFn);
900             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
901             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
902
903             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
904
905             fscal            = felec;
906
907             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
908
909             /* Update vectorial force */
910             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
911             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
912             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
913             
914             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
915             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
916             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
917
918             }
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
925             {
926
927             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
928
929             /* Compute parameters for interactions between i and j atoms */
930             qq20             = _fjsp_mul_v2r8(iq2,jq0);
931
932             /* EWALD ELECTROSTATICS */
933
934             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
935             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
936             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
937             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
938             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
939
940             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
941                                          &ewtabF,&ewtabFn);
942             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
943             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
944
945             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
946
947             fscal            = felec;
948
949             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
950
951             /* Update vectorial force */
952             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
953             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
954             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
955             
956             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
957             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
958             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
959
960             }
961
962             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
963
964             /* Inner loop uses 136 flops */
965         }
966
967         if(jidx<j_index_end)
968         {
969
970             jnrA             = jjnr[jidx];
971             j_coord_offsetA  = DIM*jnrA;
972
973             /* load j atom coordinates */
974             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
975                                               &jx0,&jy0,&jz0);
976
977             /* Calculate displacement vector */
978             dx00             = _fjsp_sub_v2r8(ix0,jx0);
979             dy00             = _fjsp_sub_v2r8(iy0,jy0);
980             dz00             = _fjsp_sub_v2r8(iz0,jz0);
981             dx10             = _fjsp_sub_v2r8(ix1,jx0);
982             dy10             = _fjsp_sub_v2r8(iy1,jy0);
983             dz10             = _fjsp_sub_v2r8(iz1,jz0);
984             dx20             = _fjsp_sub_v2r8(ix2,jx0);
985             dy20             = _fjsp_sub_v2r8(iy2,jy0);
986             dz20             = _fjsp_sub_v2r8(iz2,jz0);
987
988             /* Calculate squared distance and things based on it */
989             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
990             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
991             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
992
993             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
994             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
995             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
996
997             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
998             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
999             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1000
1001             /* Load parameters for j particles */
1002             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1003             vdwjidx0A        = 2*vdwtype[jnrA+0];
1004
1005             fjx0             = _fjsp_setzero_v2r8();
1006             fjy0             = _fjsp_setzero_v2r8();
1007             fjz0             = _fjsp_setzero_v2r8();
1008
1009             /**************************
1010              * CALCULATE INTERACTIONS *
1011              **************************/
1012
1013             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1014             {
1015
1016             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1020             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1021
1022             /* EWALD ELECTROSTATICS */
1023
1024             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1025             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1026             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1027             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1028             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1029
1030             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1031             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1032             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1033
1034             /* LENNARD-JONES DISPERSION/REPULSION */
1035
1036             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1037             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
1038
1039             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1040
1041             fscal            = _fjsp_add_v2r8(felec,fvdw);
1042
1043             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1044
1045             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1046
1047             /* Update vectorial force */
1048             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1049             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1050             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1051             
1052             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1053             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1054             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1055
1056             }
1057
1058             /**************************
1059              * CALCULATE INTERACTIONS *
1060              **************************/
1061
1062             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1063             {
1064
1065             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1066
1067             /* Compute parameters for interactions between i and j atoms */
1068             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1069
1070             /* EWALD ELECTROSTATICS */
1071
1072             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1073             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1074             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1075             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1076             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1077
1078             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1079             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1080             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1081
1082             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1083
1084             fscal            = felec;
1085
1086             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1087
1088             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1089
1090             /* Update vectorial force */
1091             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1092             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1093             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1094             
1095             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1096             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1097             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1098
1099             }
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1106             {
1107
1108             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1112
1113             /* EWALD ELECTROSTATICS */
1114
1115             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1116             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1117             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1118             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1119             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1120
1121             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1122             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1123             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1124
1125             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1126
1127             fscal            = felec;
1128
1129             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1130
1131             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1132
1133             /* Update vectorial force */
1134             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1135             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1136             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1137             
1138             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1139             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1140             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1141
1142             }
1143
1144             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1145
1146             /* Inner loop uses 136 flops */
1147         }
1148
1149         /* End of innermost loop */
1150
1151         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1152                                               f+i_coord_offset,fshift+i_shift_offset);
1153
1154         /* Increment number of inner iterations */
1155         inneriter                  += j_index_end - j_index_start;
1156
1157         /* Outer loop uses 18 flops */
1158     }
1159
1160     /* Increment number of outer iterations */
1161     outeriter        += nri;
1162
1163     /* Update outer/inner flops */
1164
1165     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*136);
1166 }