3b8b129aec1b38dd68b14affcaee10cfe1f78040
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LennardJones
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     _fjsp_v2r8       itab_tmp;
103     _fjsp_v2r8       dummy_mask,cutoff_mask;
104     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
105     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
106     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
128     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
133     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
134     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
140     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
141
142     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
143     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _fjsp_setzero_v2r8();
172         fiy0             = _fjsp_setzero_v2r8();
173         fiz0             = _fjsp_setzero_v2r8();
174         fix1             = _fjsp_setzero_v2r8();
175         fiy1             = _fjsp_setzero_v2r8();
176         fiz1             = _fjsp_setzero_v2r8();
177         fix2             = _fjsp_setzero_v2r8();
178         fiy2             = _fjsp_setzero_v2r8();
179         fiz2             = _fjsp_setzero_v2r8();
180
181         /* Reset potential sums */
182         velecsum         = _fjsp_setzero_v2r8();
183         vvdwsum          = _fjsp_setzero_v2r8();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194
195             /* load j atom coordinates */
196             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _fjsp_sub_v2r8(ix0,jx0);
201             dy00             = _fjsp_sub_v2r8(iy0,jy0);
202             dz00             = _fjsp_sub_v2r8(iz0,jz0);
203             dx10             = _fjsp_sub_v2r8(ix1,jx0);
204             dy10             = _fjsp_sub_v2r8(iy1,jy0);
205             dz10             = _fjsp_sub_v2r8(iz1,jz0);
206             dx20             = _fjsp_sub_v2r8(ix2,jx0);
207             dy20             = _fjsp_sub_v2r8(iy2,jy0);
208             dz20             = _fjsp_sub_v2r8(iz2,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
212             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
213             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
214
215             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
216             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
217             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
218
219             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
220             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
221             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227
228             fjx0             = _fjsp_setzero_v2r8();
229             fjy0             = _fjsp_setzero_v2r8();
230             fjz0             = _fjsp_setzero_v2r8();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
237             {
238
239             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _fjsp_mul_v2r8(iq0,jq0);
243             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
245
246             /* EWALD ELECTROSTATICS */
247
248             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
249             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
250             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
251             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
252             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
253
254             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
255             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
256             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
257             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
258             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
259             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
260             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
261             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
262             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
263             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
264
265             /* LENNARD-JONES DISPERSION/REPULSION */
266
267             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
268             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
269             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
270             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
271                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
272             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
273
274             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
278             velecsum         = _fjsp_add_v2r8(velecsum,velec);
279             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
280             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
281
282             fscal            = _fjsp_add_v2r8(felec,fvdw);
283
284             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
285
286             /* Update vectorial force */
287             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
288             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
289             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
290             
291             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
292             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
293             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
294
295             }
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
302             {
303
304             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _fjsp_mul_v2r8(iq1,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
313             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
314             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
315             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
316
317             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
318             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
319             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
320             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
321             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
322             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
323             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
324             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
325             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
326             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
327
328             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
332             velecsum         = _fjsp_add_v2r8(velecsum,velec);
333
334             fscal            = felec;
335
336             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
337
338             /* Update vectorial force */
339             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
340             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
341             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
342             
343             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
344             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
345             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
346
347             }
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
354             {
355
356             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _fjsp_mul_v2r8(iq2,jq0);
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
365             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
366             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
367             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
368
369             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
370             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
371             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
372             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
373             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
374             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
375             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
376             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
377             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
378             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
379
380             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
384             velecsum         = _fjsp_add_v2r8(velecsum,velec);
385
386             fscal            = felec;
387
388             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
389
390             /* Update vectorial force */
391             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
392             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
393             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
394             
395             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
396             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
397             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
398
399             }
400
401             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
402
403             /* Inner loop uses 168 flops */
404         }
405
406         if(jidx<j_index_end)
407         {
408
409             jnrA             = jjnr[jidx];
410             j_coord_offsetA  = DIM*jnrA;
411
412             /* load j atom coordinates */
413             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
414                                               &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _fjsp_sub_v2r8(ix0,jx0);
418             dy00             = _fjsp_sub_v2r8(iy0,jy0);
419             dz00             = _fjsp_sub_v2r8(iz0,jz0);
420             dx10             = _fjsp_sub_v2r8(ix1,jx0);
421             dy10             = _fjsp_sub_v2r8(iy1,jy0);
422             dz10             = _fjsp_sub_v2r8(iz1,jz0);
423             dx20             = _fjsp_sub_v2r8(ix2,jx0);
424             dy20             = _fjsp_sub_v2r8(iy2,jy0);
425             dz20             = _fjsp_sub_v2r8(iz2,jz0);
426
427             /* Calculate squared distance and things based on it */
428             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
429             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
430             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
431
432             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
433             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
434             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
435
436             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
437             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
438             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
439
440             /* Load parameters for j particles */
441             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
442             vdwjidx0A        = 2*vdwtype[jnrA+0];
443
444             fjx0             = _fjsp_setzero_v2r8();
445             fjy0             = _fjsp_setzero_v2r8();
446             fjz0             = _fjsp_setzero_v2r8();
447
448             /**************************
449              * CALCULATE INTERACTIONS *
450              **************************/
451
452             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
453             {
454
455             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
456
457             /* Compute parameters for interactions between i and j atoms */
458             qq00             = _fjsp_mul_v2r8(iq0,jq0);
459             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
460
461             /* EWALD ELECTROSTATICS */
462
463             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
464             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
465             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
466             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
467             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
468
469             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
470             ewtabD           = _fjsp_setzero_v2r8();
471             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
472             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
473             ewtabFn          = _fjsp_setzero_v2r8();
474             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
475             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
476             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
477             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
478             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
479
480             /* LENNARD-JONES DISPERSION/REPULSION */
481
482             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
483             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
484             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
485             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
486                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
487             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
488
489             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
493             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
494             velecsum         = _fjsp_add_v2r8(velecsum,velec);
495             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
496             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
497             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
498
499             fscal            = _fjsp_add_v2r8(felec,fvdw);
500
501             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
502
503             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
504
505             /* Update vectorial force */
506             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
507             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
508             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
509             
510             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
511             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
512             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
513
514             }
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
521             {
522
523             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
524
525             /* Compute parameters for interactions between i and j atoms */
526             qq10             = _fjsp_mul_v2r8(iq1,jq0);
527
528             /* EWALD ELECTROSTATICS */
529
530             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
531             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
532             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
533             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
534             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
535
536             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
537             ewtabD           = _fjsp_setzero_v2r8();
538             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
539             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
540             ewtabFn          = _fjsp_setzero_v2r8();
541             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
542             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
543             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
544             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
545             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
546
547             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
551             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
552             velecsum         = _fjsp_add_v2r8(velecsum,velec);
553
554             fscal            = felec;
555
556             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
557
558             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
559
560             /* Update vectorial force */
561             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
562             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
563             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
564             
565             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
566             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
567             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
568
569             }
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
576             {
577
578             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq20             = _fjsp_mul_v2r8(iq2,jq0);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
587             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
588             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
589             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
590
591             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
592             ewtabD           = _fjsp_setzero_v2r8();
593             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
594             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
595             ewtabFn          = _fjsp_setzero_v2r8();
596             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
597             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
598             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
599             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
600             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
601
602             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
606             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
607             velecsum         = _fjsp_add_v2r8(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
612
613             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
614
615             /* Update vectorial force */
616             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
617             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
618             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
619             
620             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
621             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
622             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
623
624             }
625
626             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
627
628             /* Inner loop uses 168 flops */
629         }
630
631         /* End of innermost loop */
632
633         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
634                                               f+i_coord_offset,fshift+i_shift_offset);
635
636         ggid                        = gid[iidx];
637         /* Update potential energies */
638         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
639         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
640
641         /* Increment number of inner iterations */
642         inneriter                  += j_index_end - j_index_start;
643
644         /* Outer loop uses 20 flops */
645     }
646
647     /* Increment number of outer iterations */
648     outeriter        += nri;
649
650     /* Update outer/inner flops */
651
652     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*168);
653 }
654 /*
655  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sparc64_hpc_ace_double
656  * Electrostatics interaction: Ewald
657  * VdW interaction:            LennardJones
658  * Geometry:                   Water3-Particle
659  * Calculate force/pot:        Force
660  */
661 void
662 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sparc64_hpc_ace_double
663                     (t_nblist                    * gmx_restrict       nlist,
664                      rvec                        * gmx_restrict          xx,
665                      rvec                        * gmx_restrict          ff,
666                      t_forcerec                  * gmx_restrict          fr,
667                      t_mdatoms                   * gmx_restrict     mdatoms,
668                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
669                      t_nrnb                      * gmx_restrict        nrnb)
670 {
671     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
672      * just 0 for non-waters.
673      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
674      * jnr indices corresponding to data put in the four positions in the SIMD register.
675      */
676     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
677     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
678     int              jnrA,jnrB;
679     int              j_coord_offsetA,j_coord_offsetB;
680     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
681     real             rcutoff_scalar;
682     real             *shiftvec,*fshift,*x,*f;
683     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
684     int              vdwioffset0;
685     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
686     int              vdwioffset1;
687     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
688     int              vdwioffset2;
689     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
690     int              vdwjidx0A,vdwjidx0B;
691     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
692     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
693     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
694     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
695     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
696     real             *charge;
697     int              nvdwtype;
698     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
699     int              *vdwtype;
700     real             *vdwparam;
701     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
702     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
703     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
704     real             *ewtab;
705     _fjsp_v2r8       itab_tmp;
706     _fjsp_v2r8       dummy_mask,cutoff_mask;
707     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
708     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
709     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
710
711     x                = xx[0];
712     f                = ff[0];
713
714     nri              = nlist->nri;
715     iinr             = nlist->iinr;
716     jindex           = nlist->jindex;
717     jjnr             = nlist->jjnr;
718     shiftidx         = nlist->shift;
719     gid              = nlist->gid;
720     shiftvec         = fr->shift_vec[0];
721     fshift           = fr->fshift[0];
722     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
723     charge           = mdatoms->chargeA;
724     nvdwtype         = fr->ntype;
725     vdwparam         = fr->nbfp;
726     vdwtype          = mdatoms->typeA;
727
728     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
729     ewtab            = fr->ic->tabq_coul_F;
730     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
731     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
732
733     /* Setup water-specific parameters */
734     inr              = nlist->iinr[0];
735     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
736     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
737     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
738     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
739
740     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
741     rcutoff_scalar   = fr->rcoulomb;
742     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
743     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
744
745     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
746     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
747
748     /* Avoid stupid compiler warnings */
749     jnrA = jnrB = 0;
750     j_coord_offsetA = 0;
751     j_coord_offsetB = 0;
752
753     outeriter        = 0;
754     inneriter        = 0;
755
756     /* Start outer loop over neighborlists */
757     for(iidx=0; iidx<nri; iidx++)
758     {
759         /* Load shift vector for this list */
760         i_shift_offset   = DIM*shiftidx[iidx];
761
762         /* Load limits for loop over neighbors */
763         j_index_start    = jindex[iidx];
764         j_index_end      = jindex[iidx+1];
765
766         /* Get outer coordinate index */
767         inr              = iinr[iidx];
768         i_coord_offset   = DIM*inr;
769
770         /* Load i particle coords and add shift vector */
771         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
772                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
773
774         fix0             = _fjsp_setzero_v2r8();
775         fiy0             = _fjsp_setzero_v2r8();
776         fiz0             = _fjsp_setzero_v2r8();
777         fix1             = _fjsp_setzero_v2r8();
778         fiy1             = _fjsp_setzero_v2r8();
779         fiz1             = _fjsp_setzero_v2r8();
780         fix2             = _fjsp_setzero_v2r8();
781         fiy2             = _fjsp_setzero_v2r8();
782         fiz2             = _fjsp_setzero_v2r8();
783
784         /* Start inner kernel loop */
785         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
786         {
787
788             /* Get j neighbor index, and coordinate index */
789             jnrA             = jjnr[jidx];
790             jnrB             = jjnr[jidx+1];
791             j_coord_offsetA  = DIM*jnrA;
792             j_coord_offsetB  = DIM*jnrB;
793
794             /* load j atom coordinates */
795             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
796                                               &jx0,&jy0,&jz0);
797
798             /* Calculate displacement vector */
799             dx00             = _fjsp_sub_v2r8(ix0,jx0);
800             dy00             = _fjsp_sub_v2r8(iy0,jy0);
801             dz00             = _fjsp_sub_v2r8(iz0,jz0);
802             dx10             = _fjsp_sub_v2r8(ix1,jx0);
803             dy10             = _fjsp_sub_v2r8(iy1,jy0);
804             dz10             = _fjsp_sub_v2r8(iz1,jz0);
805             dx20             = _fjsp_sub_v2r8(ix2,jx0);
806             dy20             = _fjsp_sub_v2r8(iy2,jy0);
807             dz20             = _fjsp_sub_v2r8(iz2,jz0);
808
809             /* Calculate squared distance and things based on it */
810             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
811             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
812             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
813
814             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
815             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
816             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
817
818             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
819             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
820             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
821
822             /* Load parameters for j particles */
823             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
824             vdwjidx0A        = 2*vdwtype[jnrA+0];
825             vdwjidx0B        = 2*vdwtype[jnrB+0];
826
827             fjx0             = _fjsp_setzero_v2r8();
828             fjy0             = _fjsp_setzero_v2r8();
829             fjz0             = _fjsp_setzero_v2r8();
830
831             /**************************
832              * CALCULATE INTERACTIONS *
833              **************************/
834
835             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
836             {
837
838             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
839
840             /* Compute parameters for interactions between i and j atoms */
841             qq00             = _fjsp_mul_v2r8(iq0,jq0);
842             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
843                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
844
845             /* EWALD ELECTROSTATICS */
846
847             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
848             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
849             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
850             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
851             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
852
853             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
854                                          &ewtabF,&ewtabFn);
855             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
856             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
857
858             /* LENNARD-JONES DISPERSION/REPULSION */
859
860             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
861             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
862
863             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
864
865             fscal            = _fjsp_add_v2r8(felec,fvdw);
866
867             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
868
869             /* Update vectorial force */
870             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
871             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
872             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
873             
874             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
875             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
876             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
877
878             }
879
880             /**************************
881              * CALCULATE INTERACTIONS *
882              **************************/
883
884             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
885             {
886
887             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
888
889             /* Compute parameters for interactions between i and j atoms */
890             qq10             = _fjsp_mul_v2r8(iq1,jq0);
891
892             /* EWALD ELECTROSTATICS */
893
894             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
895             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
896             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
897             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
898             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
899
900             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
901                                          &ewtabF,&ewtabFn);
902             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
903             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
904
905             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
906
907             fscal            = felec;
908
909             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
910
911             /* Update vectorial force */
912             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
913             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
914             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
915             
916             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
917             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
918             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
919
920             }
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
927             {
928
929             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
930
931             /* Compute parameters for interactions between i and j atoms */
932             qq20             = _fjsp_mul_v2r8(iq2,jq0);
933
934             /* EWALD ELECTROSTATICS */
935
936             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
937             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
938             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
939             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
940             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
941
942             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
943                                          &ewtabF,&ewtabFn);
944             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
945             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
946
947             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
948
949             fscal            = felec;
950
951             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
952
953             /* Update vectorial force */
954             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
955             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
956             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
957             
958             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
959             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
960             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
961
962             }
963
964             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
965
966             /* Inner loop uses 136 flops */
967         }
968
969         if(jidx<j_index_end)
970         {
971
972             jnrA             = jjnr[jidx];
973             j_coord_offsetA  = DIM*jnrA;
974
975             /* load j atom coordinates */
976             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
977                                               &jx0,&jy0,&jz0);
978
979             /* Calculate displacement vector */
980             dx00             = _fjsp_sub_v2r8(ix0,jx0);
981             dy00             = _fjsp_sub_v2r8(iy0,jy0);
982             dz00             = _fjsp_sub_v2r8(iz0,jz0);
983             dx10             = _fjsp_sub_v2r8(ix1,jx0);
984             dy10             = _fjsp_sub_v2r8(iy1,jy0);
985             dz10             = _fjsp_sub_v2r8(iz1,jz0);
986             dx20             = _fjsp_sub_v2r8(ix2,jx0);
987             dy20             = _fjsp_sub_v2r8(iy2,jy0);
988             dz20             = _fjsp_sub_v2r8(iz2,jz0);
989
990             /* Calculate squared distance and things based on it */
991             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
992             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
993             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
994
995             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
996             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
997             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
998
999             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1000             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1001             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1002
1003             /* Load parameters for j particles */
1004             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1005             vdwjidx0A        = 2*vdwtype[jnrA+0];
1006
1007             fjx0             = _fjsp_setzero_v2r8();
1008             fjy0             = _fjsp_setzero_v2r8();
1009             fjz0             = _fjsp_setzero_v2r8();
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1016             {
1017
1018             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1022             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1023
1024             /* EWALD ELECTROSTATICS */
1025
1026             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1027             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1028             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1029             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1030             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1031
1032             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1033             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1034             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1035
1036             /* LENNARD-JONES DISPERSION/REPULSION */
1037
1038             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1039             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
1040
1041             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1042
1043             fscal            = _fjsp_add_v2r8(felec,fvdw);
1044
1045             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1046
1047             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1048
1049             /* Update vectorial force */
1050             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1051             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1052             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1053             
1054             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1055             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1056             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1057
1058             }
1059
1060             /**************************
1061              * CALCULATE INTERACTIONS *
1062              **************************/
1063
1064             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1065             {
1066
1067             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1071
1072             /* EWALD ELECTROSTATICS */
1073
1074             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1075             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1076             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1077             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1078             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1079
1080             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1081             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1082             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1083
1084             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1085
1086             fscal            = felec;
1087
1088             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1089
1090             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1091
1092             /* Update vectorial force */
1093             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1094             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1095             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1096             
1097             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1098             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1099             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1100
1101             }
1102
1103             /**************************
1104              * CALCULATE INTERACTIONS *
1105              **************************/
1106
1107             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1108             {
1109
1110             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1114
1115             /* EWALD ELECTROSTATICS */
1116
1117             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1118             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1119             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1120             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1121             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1122
1123             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1124             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1125             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1126
1127             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1128
1129             fscal            = felec;
1130
1131             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1132
1133             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1134
1135             /* Update vectorial force */
1136             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1137             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1138             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1139             
1140             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1141             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1142             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1143
1144             }
1145
1146             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1147
1148             /* Inner loop uses 136 flops */
1149         }
1150
1151         /* End of innermost loop */
1152
1153         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1154                                               f+i_coord_offset,fshift+i_shift_offset);
1155
1156         /* Increment number of inner iterations */
1157         inneriter                  += j_index_end - j_index_start;
1158
1159         /* Outer loop uses 18 flops */
1160     }
1161
1162     /* Increment number of outer iterations */
1163     outeriter        += nri;
1164
1165     /* Update outer/inner flops */
1166
1167     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*136);
1168 }