Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/legacyheaders/vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LennardJones
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     _fjsp_v2r8       itab_tmp;
103     _fjsp_v2r8       dummy_mask,cutoff_mask;
104     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
105     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
106     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
128     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
133     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
134     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
140     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
141
142     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
143     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _fjsp_setzero_v2r8();
172         fiy0             = _fjsp_setzero_v2r8();
173         fiz0             = _fjsp_setzero_v2r8();
174         fix1             = _fjsp_setzero_v2r8();
175         fiy1             = _fjsp_setzero_v2r8();
176         fiz1             = _fjsp_setzero_v2r8();
177         fix2             = _fjsp_setzero_v2r8();
178         fiy2             = _fjsp_setzero_v2r8();
179         fiz2             = _fjsp_setzero_v2r8();
180
181         /* Reset potential sums */
182         velecsum         = _fjsp_setzero_v2r8();
183         vvdwsum          = _fjsp_setzero_v2r8();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194
195             /* load j atom coordinates */
196             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _fjsp_sub_v2r8(ix0,jx0);
201             dy00             = _fjsp_sub_v2r8(iy0,jy0);
202             dz00             = _fjsp_sub_v2r8(iz0,jz0);
203             dx10             = _fjsp_sub_v2r8(ix1,jx0);
204             dy10             = _fjsp_sub_v2r8(iy1,jy0);
205             dz10             = _fjsp_sub_v2r8(iz1,jz0);
206             dx20             = _fjsp_sub_v2r8(ix2,jx0);
207             dy20             = _fjsp_sub_v2r8(iy2,jy0);
208             dz20             = _fjsp_sub_v2r8(iz2,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
212             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
213             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
214
215             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
216             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
217             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
218
219             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
220             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
221             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227
228             fjx0             = _fjsp_setzero_v2r8();
229             fjy0             = _fjsp_setzero_v2r8();
230             fjz0             = _fjsp_setzero_v2r8();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
237             {
238
239             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _fjsp_mul_v2r8(iq0,jq0);
243             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
245
246             /* EWALD ELECTROSTATICS */
247
248             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
249             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
250             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
251             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
252             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
253
254             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
255             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
256             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
257             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
258             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
259             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
260             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
261             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
262             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
263             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
264
265             /* LENNARD-JONES DISPERSION/REPULSION */
266
267             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
268             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
269             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
270             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
271                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
272             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
273
274             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
278             velecsum         = _fjsp_add_v2r8(velecsum,velec);
279             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
280             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
281
282             fscal            = _fjsp_add_v2r8(felec,fvdw);
283
284             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
285
286             /* Update vectorial force */
287             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
288             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
289             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
290             
291             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
292             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
293             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
294
295             }
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
302             {
303
304             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _fjsp_mul_v2r8(iq1,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
313             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
314             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
315             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
316
317             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
318             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
319             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
320             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
321             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
322             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
323             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
324             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
325             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
326             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
327
328             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
332             velecsum         = _fjsp_add_v2r8(velecsum,velec);
333
334             fscal            = felec;
335
336             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
337
338             /* Update vectorial force */
339             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
340             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
341             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
342             
343             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
344             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
345             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
346
347             }
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
354             {
355
356             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _fjsp_mul_v2r8(iq2,jq0);
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
365             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
366             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
367             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
368
369             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
370             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
371             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
372             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
373             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
374             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
375             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
376             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
377             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
378             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
379
380             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
384             velecsum         = _fjsp_add_v2r8(velecsum,velec);
385
386             fscal            = felec;
387
388             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
389
390             /* Update vectorial force */
391             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
392             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
393             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
394             
395             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
396             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
397             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
398
399             }
400
401             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
402
403             /* Inner loop uses 168 flops */
404         }
405
406         if(jidx<j_index_end)
407         {
408
409             jnrA             = jjnr[jidx];
410             j_coord_offsetA  = DIM*jnrA;
411
412             /* load j atom coordinates */
413             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
414                                               &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _fjsp_sub_v2r8(ix0,jx0);
418             dy00             = _fjsp_sub_v2r8(iy0,jy0);
419             dz00             = _fjsp_sub_v2r8(iz0,jz0);
420             dx10             = _fjsp_sub_v2r8(ix1,jx0);
421             dy10             = _fjsp_sub_v2r8(iy1,jy0);
422             dz10             = _fjsp_sub_v2r8(iz1,jz0);
423             dx20             = _fjsp_sub_v2r8(ix2,jx0);
424             dy20             = _fjsp_sub_v2r8(iy2,jy0);
425             dz20             = _fjsp_sub_v2r8(iz2,jz0);
426
427             /* Calculate squared distance and things based on it */
428             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
429             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
430             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
431
432             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
433             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
434             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
435
436             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
437             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
438             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
439
440             /* Load parameters for j particles */
441             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
442             vdwjidx0A        = 2*vdwtype[jnrA+0];
443
444             fjx0             = _fjsp_setzero_v2r8();
445             fjy0             = _fjsp_setzero_v2r8();
446             fjz0             = _fjsp_setzero_v2r8();
447
448             /**************************
449              * CALCULATE INTERACTIONS *
450              **************************/
451
452             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
453             {
454
455             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
456
457             /* Compute parameters for interactions between i and j atoms */
458             qq00             = _fjsp_mul_v2r8(iq0,jq0);
459             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
460                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
461
462             /* EWALD ELECTROSTATICS */
463
464             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
465             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
466             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
467             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
468             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
469
470             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
471             ewtabD           = _fjsp_setzero_v2r8();
472             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
473             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
474             ewtabFn          = _fjsp_setzero_v2r8();
475             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
476             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
477             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
478             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
479             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
480
481             /* LENNARD-JONES DISPERSION/REPULSION */
482
483             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
484             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
485             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
486             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
487                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
488             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
489
490             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
491
492             /* Update potential sum for this i atom from the interaction with this j atom. */
493             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
494             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
495             velecsum         = _fjsp_add_v2r8(velecsum,velec);
496             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
497             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
498             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
499
500             fscal            = _fjsp_add_v2r8(felec,fvdw);
501
502             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
503
504             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
505
506             /* Update vectorial force */
507             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
508             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
509             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
510             
511             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
512             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
513             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
514
515             }
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
522             {
523
524             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
525
526             /* Compute parameters for interactions between i and j atoms */
527             qq10             = _fjsp_mul_v2r8(iq1,jq0);
528
529             /* EWALD ELECTROSTATICS */
530
531             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
532             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
533             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
534             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
535             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
536
537             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
538             ewtabD           = _fjsp_setzero_v2r8();
539             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
540             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
541             ewtabFn          = _fjsp_setzero_v2r8();
542             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
543             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
544             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
545             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
546             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
547
548             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
552             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
553             velecsum         = _fjsp_add_v2r8(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
558
559             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
560
561             /* Update vectorial force */
562             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
563             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
564             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
565             
566             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
567             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
568             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
569
570             }
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
577             {
578
579             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq20             = _fjsp_mul_v2r8(iq2,jq0);
583
584             /* EWALD ELECTROSTATICS */
585
586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
588             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
589             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
590             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
591
592             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
593             ewtabD           = _fjsp_setzero_v2r8();
594             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
595             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
596             ewtabFn          = _fjsp_setzero_v2r8();
597             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
598             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
599             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
600             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
601             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
602
603             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
607             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
608             velecsum         = _fjsp_add_v2r8(velecsum,velec);
609
610             fscal            = felec;
611
612             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
613
614             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
615
616             /* Update vectorial force */
617             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
618             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
619             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
620             
621             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
622             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
623             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
624
625             }
626
627             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
628
629             /* Inner loop uses 168 flops */
630         }
631
632         /* End of innermost loop */
633
634         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
635                                               f+i_coord_offset,fshift+i_shift_offset);
636
637         ggid                        = gid[iidx];
638         /* Update potential energies */
639         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
640         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
641
642         /* Increment number of inner iterations */
643         inneriter                  += j_index_end - j_index_start;
644
645         /* Outer loop uses 20 flops */
646     }
647
648     /* Increment number of outer iterations */
649     outeriter        += nri;
650
651     /* Update outer/inner flops */
652
653     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*168);
654 }
655 /*
656  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sparc64_hpc_ace_double
657  * Electrostatics interaction: Ewald
658  * VdW interaction:            LennardJones
659  * Geometry:                   Water3-Particle
660  * Calculate force/pot:        Force
661  */
662 void
663 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sparc64_hpc_ace_double
664                     (t_nblist                    * gmx_restrict       nlist,
665                      rvec                        * gmx_restrict          xx,
666                      rvec                        * gmx_restrict          ff,
667                      t_forcerec                  * gmx_restrict          fr,
668                      t_mdatoms                   * gmx_restrict     mdatoms,
669                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
670                      t_nrnb                      * gmx_restrict        nrnb)
671 {
672     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
673      * just 0 for non-waters.
674      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
675      * jnr indices corresponding to data put in the four positions in the SIMD register.
676      */
677     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
678     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
679     int              jnrA,jnrB;
680     int              j_coord_offsetA,j_coord_offsetB;
681     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
682     real             rcutoff_scalar;
683     real             *shiftvec,*fshift,*x,*f;
684     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
685     int              vdwioffset0;
686     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
687     int              vdwioffset1;
688     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
689     int              vdwioffset2;
690     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
691     int              vdwjidx0A,vdwjidx0B;
692     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
693     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
694     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
695     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
696     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
697     real             *charge;
698     int              nvdwtype;
699     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
700     int              *vdwtype;
701     real             *vdwparam;
702     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
703     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
704     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
705     real             *ewtab;
706     _fjsp_v2r8       itab_tmp;
707     _fjsp_v2r8       dummy_mask,cutoff_mask;
708     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
709     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
710     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
711
712     x                = xx[0];
713     f                = ff[0];
714
715     nri              = nlist->nri;
716     iinr             = nlist->iinr;
717     jindex           = nlist->jindex;
718     jjnr             = nlist->jjnr;
719     shiftidx         = nlist->shift;
720     gid              = nlist->gid;
721     shiftvec         = fr->shift_vec[0];
722     fshift           = fr->fshift[0];
723     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
724     charge           = mdatoms->chargeA;
725     nvdwtype         = fr->ntype;
726     vdwparam         = fr->nbfp;
727     vdwtype          = mdatoms->typeA;
728
729     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
730     ewtab            = fr->ic->tabq_coul_F;
731     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
732     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
733
734     /* Setup water-specific parameters */
735     inr              = nlist->iinr[0];
736     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
737     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
738     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
739     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
740
741     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
742     rcutoff_scalar   = fr->rcoulomb;
743     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
744     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
745
746     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
747     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
748
749     /* Avoid stupid compiler warnings */
750     jnrA = jnrB = 0;
751     j_coord_offsetA = 0;
752     j_coord_offsetB = 0;
753
754     outeriter        = 0;
755     inneriter        = 0;
756
757     /* Start outer loop over neighborlists */
758     for(iidx=0; iidx<nri; iidx++)
759     {
760         /* Load shift vector for this list */
761         i_shift_offset   = DIM*shiftidx[iidx];
762
763         /* Load limits for loop over neighbors */
764         j_index_start    = jindex[iidx];
765         j_index_end      = jindex[iidx+1];
766
767         /* Get outer coordinate index */
768         inr              = iinr[iidx];
769         i_coord_offset   = DIM*inr;
770
771         /* Load i particle coords and add shift vector */
772         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
773                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
774
775         fix0             = _fjsp_setzero_v2r8();
776         fiy0             = _fjsp_setzero_v2r8();
777         fiz0             = _fjsp_setzero_v2r8();
778         fix1             = _fjsp_setzero_v2r8();
779         fiy1             = _fjsp_setzero_v2r8();
780         fiz1             = _fjsp_setzero_v2r8();
781         fix2             = _fjsp_setzero_v2r8();
782         fiy2             = _fjsp_setzero_v2r8();
783         fiz2             = _fjsp_setzero_v2r8();
784
785         /* Start inner kernel loop */
786         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
787         {
788
789             /* Get j neighbor index, and coordinate index */
790             jnrA             = jjnr[jidx];
791             jnrB             = jjnr[jidx+1];
792             j_coord_offsetA  = DIM*jnrA;
793             j_coord_offsetB  = DIM*jnrB;
794
795             /* load j atom coordinates */
796             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
797                                               &jx0,&jy0,&jz0);
798
799             /* Calculate displacement vector */
800             dx00             = _fjsp_sub_v2r8(ix0,jx0);
801             dy00             = _fjsp_sub_v2r8(iy0,jy0);
802             dz00             = _fjsp_sub_v2r8(iz0,jz0);
803             dx10             = _fjsp_sub_v2r8(ix1,jx0);
804             dy10             = _fjsp_sub_v2r8(iy1,jy0);
805             dz10             = _fjsp_sub_v2r8(iz1,jz0);
806             dx20             = _fjsp_sub_v2r8(ix2,jx0);
807             dy20             = _fjsp_sub_v2r8(iy2,jy0);
808             dz20             = _fjsp_sub_v2r8(iz2,jz0);
809
810             /* Calculate squared distance and things based on it */
811             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
812             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
813             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
814
815             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
816             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
817             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
818
819             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
820             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
821             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
822
823             /* Load parameters for j particles */
824             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
825             vdwjidx0A        = 2*vdwtype[jnrA+0];
826             vdwjidx0B        = 2*vdwtype[jnrB+0];
827
828             fjx0             = _fjsp_setzero_v2r8();
829             fjy0             = _fjsp_setzero_v2r8();
830             fjz0             = _fjsp_setzero_v2r8();
831
832             /**************************
833              * CALCULATE INTERACTIONS *
834              **************************/
835
836             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
837             {
838
839             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
840
841             /* Compute parameters for interactions between i and j atoms */
842             qq00             = _fjsp_mul_v2r8(iq0,jq0);
843             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
844                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
845
846             /* EWALD ELECTROSTATICS */
847
848             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
849             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
850             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
851             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
852             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
853
854             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
855                                          &ewtabF,&ewtabFn);
856             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
857             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
858
859             /* LENNARD-JONES DISPERSION/REPULSION */
860
861             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
862             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
863
864             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
865
866             fscal            = _fjsp_add_v2r8(felec,fvdw);
867
868             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
869
870             /* Update vectorial force */
871             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
872             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
873             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
874             
875             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
876             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
877             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
878
879             }
880
881             /**************************
882              * CALCULATE INTERACTIONS *
883              **************************/
884
885             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
886             {
887
888             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
889
890             /* Compute parameters for interactions between i and j atoms */
891             qq10             = _fjsp_mul_v2r8(iq1,jq0);
892
893             /* EWALD ELECTROSTATICS */
894
895             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
896             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
897             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
898             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
899             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
900
901             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
902                                          &ewtabF,&ewtabFn);
903             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
904             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
905
906             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
907
908             fscal            = felec;
909
910             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
911
912             /* Update vectorial force */
913             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
914             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
915             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
916             
917             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
918             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
919             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
920
921             }
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
928             {
929
930             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
931
932             /* Compute parameters for interactions between i and j atoms */
933             qq20             = _fjsp_mul_v2r8(iq2,jq0);
934
935             /* EWALD ELECTROSTATICS */
936
937             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
938             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
939             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
940             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
941             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
942
943             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
944                                          &ewtabF,&ewtabFn);
945             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
946             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
947
948             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
949
950             fscal            = felec;
951
952             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
953
954             /* Update vectorial force */
955             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
956             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
957             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
958             
959             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
960             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
961             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
962
963             }
964
965             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
966
967             /* Inner loop uses 136 flops */
968         }
969
970         if(jidx<j_index_end)
971         {
972
973             jnrA             = jjnr[jidx];
974             j_coord_offsetA  = DIM*jnrA;
975
976             /* load j atom coordinates */
977             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
978                                               &jx0,&jy0,&jz0);
979
980             /* Calculate displacement vector */
981             dx00             = _fjsp_sub_v2r8(ix0,jx0);
982             dy00             = _fjsp_sub_v2r8(iy0,jy0);
983             dz00             = _fjsp_sub_v2r8(iz0,jz0);
984             dx10             = _fjsp_sub_v2r8(ix1,jx0);
985             dy10             = _fjsp_sub_v2r8(iy1,jy0);
986             dz10             = _fjsp_sub_v2r8(iz1,jz0);
987             dx20             = _fjsp_sub_v2r8(ix2,jx0);
988             dy20             = _fjsp_sub_v2r8(iy2,jy0);
989             dz20             = _fjsp_sub_v2r8(iz2,jz0);
990
991             /* Calculate squared distance and things based on it */
992             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
993             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
994             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
995
996             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
997             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
998             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
999
1000             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1001             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1002             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1003
1004             /* Load parameters for j particles */
1005             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1006             vdwjidx0A        = 2*vdwtype[jnrA+0];
1007
1008             fjx0             = _fjsp_setzero_v2r8();
1009             fjy0             = _fjsp_setzero_v2r8();
1010             fjz0             = _fjsp_setzero_v2r8();
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1017             {
1018
1019             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1023             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1024                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1025
1026             /* EWALD ELECTROSTATICS */
1027
1028             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1029             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1030             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1031             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1032             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1033
1034             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1035             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1036             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1037
1038             /* LENNARD-JONES DISPERSION/REPULSION */
1039
1040             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1041             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
1042
1043             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1044
1045             fscal            = _fjsp_add_v2r8(felec,fvdw);
1046
1047             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1048
1049             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1050
1051             /* Update vectorial force */
1052             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1053             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1054             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1055             
1056             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1057             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1058             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1059
1060             }
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1067             {
1068
1069             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1073
1074             /* EWALD ELECTROSTATICS */
1075
1076             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1077             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1078             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1079             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1080             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1081
1082             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1083             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1084             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1085
1086             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1087
1088             fscal            = felec;
1089
1090             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1091
1092             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1093
1094             /* Update vectorial force */
1095             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1096             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1097             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1098             
1099             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1100             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1101             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1102
1103             }
1104
1105             /**************************
1106              * CALCULATE INTERACTIONS *
1107              **************************/
1108
1109             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1110             {
1111
1112             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1116
1117             /* EWALD ELECTROSTATICS */
1118
1119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1120             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1121             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1122             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1123             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1124
1125             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1126             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1127             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1128
1129             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1130
1131             fscal            = felec;
1132
1133             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1134
1135             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1136
1137             /* Update vectorial force */
1138             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1139             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1140             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1141             
1142             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1143             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1144             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1145
1146             }
1147
1148             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1149
1150             /* Inner loop uses 136 flops */
1151         }
1152
1153         /* End of innermost loop */
1154
1155         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1156                                               f+i_coord_offset,fshift+i_shift_offset);
1157
1158         /* Increment number of inner iterations */
1159         inneriter                  += j_index_end - j_index_start;
1160
1161         /* Outer loop uses 18 flops */
1162     }
1163
1164     /* Increment number of outer iterations */
1165     outeriter        += nri;
1166
1167     /* Update outer/inner flops */
1168
1169     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*136);
1170 }