Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     real             *ewtab;
94     _fjsp_v2r8       itab_tmp;
95     _fjsp_v2r8       dummy_mask,cutoff_mask;
96     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
97     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
98     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
99
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
120     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->ic->rcoulomb;
124     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
125     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
126
127     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
128     rvdw             = gmx_fjsp_set1_v2r8(fr->ic->rvdw);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _fjsp_setzero_v2r8();
156         fiy0             = _fjsp_setzero_v2r8();
157         fiz0             = _fjsp_setzero_v2r8();
158
159         /* Load parameters for i particles */
160         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _fjsp_setzero_v2r8();
165         vvdwsum          = _fjsp_setzero_v2r8();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _fjsp_sub_v2r8(ix0,jx0);
183             dy00             = _fjsp_sub_v2r8(iy0,jy0);
184             dz00             = _fjsp_sub_v2r8(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
188
189             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
190
191             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
195             vdwjidx0A        = 2*vdwtype[jnrA+0];
196             vdwjidx0B        = 2*vdwtype[jnrB+0];
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
203             {
204
205             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _fjsp_mul_v2r8(iq0,jq0);
209             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211
212             /* EWALD ELECTROSTATICS */
213
214             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
215             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
216             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
217             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
218             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
219
220             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
221             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
222             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
223             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
224             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
225             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
226             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
227             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
228             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
229             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
230
231             /* LENNARD-JONES DISPERSION/REPULSION */
232
233             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
234             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
235             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
236             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
237                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
238             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
239
240             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
241
242             /* Update potential sum for this i atom from the interaction with this j atom. */
243             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
244             velecsum         = _fjsp_add_v2r8(velecsum,velec);
245             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
246             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
247
248             fscal            = _fjsp_add_v2r8(felec,fvdw);
249
250             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
251
252             /* Update vectorial force */
253             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
254             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
255             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
256             
257             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
258
259             }
260
261             /* Inner loop uses 67 flops */
262         }
263
264         if(jidx<j_index_end)
265         {
266
267             jnrA             = jjnr[jidx];
268             j_coord_offsetA  = DIM*jnrA;
269
270             /* load j atom coordinates */
271             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
272                                               &jx0,&jy0,&jz0);
273
274             /* Calculate displacement vector */
275             dx00             = _fjsp_sub_v2r8(ix0,jx0);
276             dy00             = _fjsp_sub_v2r8(iy0,jy0);
277             dz00             = _fjsp_sub_v2r8(iz0,jz0);
278
279             /* Calculate squared distance and things based on it */
280             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
281
282             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
283
284             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
285
286             /* Load parameters for j particles */
287             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
288             vdwjidx0A        = 2*vdwtype[jnrA+0];
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
295             {
296
297             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq00             = _fjsp_mul_v2r8(iq0,jq0);
301             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
302                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
308             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
309             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
310             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
311
312             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
313             ewtabD           = _fjsp_setzero_v2r8();
314             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
315             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
316             ewtabFn          = _fjsp_setzero_v2r8();
317             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
318             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
319             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
320             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
321             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
322
323             /* LENNARD-JONES DISPERSION/REPULSION */
324
325             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
326             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
327             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
328             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
329                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
330             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
331
332             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
336             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
337             velecsum         = _fjsp_add_v2r8(velecsum,velec);
338             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
339             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
340             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
341
342             fscal            = _fjsp_add_v2r8(felec,fvdw);
343
344             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
345
346             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
347
348             /* Update vectorial force */
349             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
350             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
351             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
352             
353             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
354
355             }
356
357             /* Inner loop uses 67 flops */
358         }
359
360         /* End of innermost loop */
361
362         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
363                                               f+i_coord_offset,fshift+i_shift_offset);
364
365         ggid                        = gid[iidx];
366         /* Update potential energies */
367         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
368         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
369
370         /* Increment number of inner iterations */
371         inneriter                  += j_index_end - j_index_start;
372
373         /* Outer loop uses 9 flops */
374     }
375
376     /* Increment number of outer iterations */
377     outeriter        += nri;
378
379     /* Update outer/inner flops */
380
381     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*67);
382 }
383 /*
384  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sparc64_hpc_ace_double
385  * Electrostatics interaction: Ewald
386  * VdW interaction:            LennardJones
387  * Geometry:                   Particle-Particle
388  * Calculate force/pot:        Force
389  */
390 void
391 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sparc64_hpc_ace_double
392                     (t_nblist                    * gmx_restrict       nlist,
393                      rvec                        * gmx_restrict          xx,
394                      rvec                        * gmx_restrict          ff,
395                      struct t_forcerec           * gmx_restrict          fr,
396                      t_mdatoms                   * gmx_restrict     mdatoms,
397                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
398                      t_nrnb                      * gmx_restrict        nrnb)
399 {
400     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
401      * just 0 for non-waters.
402      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
403      * jnr indices corresponding to data put in the four positions in the SIMD register.
404      */
405     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
406     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
407     int              jnrA,jnrB;
408     int              j_coord_offsetA,j_coord_offsetB;
409     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
410     real             rcutoff_scalar;
411     real             *shiftvec,*fshift,*x,*f;
412     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
413     int              vdwioffset0;
414     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
415     int              vdwjidx0A,vdwjidx0B;
416     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
417     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
418     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
419     real             *charge;
420     int              nvdwtype;
421     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
422     int              *vdwtype;
423     real             *vdwparam;
424     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
425     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
426     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
427     real             *ewtab;
428     _fjsp_v2r8       itab_tmp;
429     _fjsp_v2r8       dummy_mask,cutoff_mask;
430     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
431     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
432     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
433
434     x                = xx[0];
435     f                = ff[0];
436
437     nri              = nlist->nri;
438     iinr             = nlist->iinr;
439     jindex           = nlist->jindex;
440     jjnr             = nlist->jjnr;
441     shiftidx         = nlist->shift;
442     gid              = nlist->gid;
443     shiftvec         = fr->shift_vec[0];
444     fshift           = fr->fshift[0];
445     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
446     charge           = mdatoms->chargeA;
447     nvdwtype         = fr->ntype;
448     vdwparam         = fr->nbfp;
449     vdwtype          = mdatoms->typeA;
450
451     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
452     ewtab            = fr->ic->tabq_coul_F;
453     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
454     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
455
456     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
457     rcutoff_scalar   = fr->ic->rcoulomb;
458     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
459     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
460
461     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
462     rvdw             = gmx_fjsp_set1_v2r8(fr->ic->rvdw);
463
464     /* Avoid stupid compiler warnings */
465     jnrA = jnrB = 0;
466     j_coord_offsetA = 0;
467     j_coord_offsetB = 0;
468
469     outeriter        = 0;
470     inneriter        = 0;
471
472     /* Start outer loop over neighborlists */
473     for(iidx=0; iidx<nri; iidx++)
474     {
475         /* Load shift vector for this list */
476         i_shift_offset   = DIM*shiftidx[iidx];
477
478         /* Load limits for loop over neighbors */
479         j_index_start    = jindex[iidx];
480         j_index_end      = jindex[iidx+1];
481
482         /* Get outer coordinate index */
483         inr              = iinr[iidx];
484         i_coord_offset   = DIM*inr;
485
486         /* Load i particle coords and add shift vector */
487         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
488
489         fix0             = _fjsp_setzero_v2r8();
490         fiy0             = _fjsp_setzero_v2r8();
491         fiz0             = _fjsp_setzero_v2r8();
492
493         /* Load parameters for i particles */
494         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
495         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
496
497         /* Start inner kernel loop */
498         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
499         {
500
501             /* Get j neighbor index, and coordinate index */
502             jnrA             = jjnr[jidx];
503             jnrB             = jjnr[jidx+1];
504             j_coord_offsetA  = DIM*jnrA;
505             j_coord_offsetB  = DIM*jnrB;
506
507             /* load j atom coordinates */
508             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
509                                               &jx0,&jy0,&jz0);
510
511             /* Calculate displacement vector */
512             dx00             = _fjsp_sub_v2r8(ix0,jx0);
513             dy00             = _fjsp_sub_v2r8(iy0,jy0);
514             dz00             = _fjsp_sub_v2r8(iz0,jz0);
515
516             /* Calculate squared distance and things based on it */
517             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
518
519             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
520
521             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
522
523             /* Load parameters for j particles */
524             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
525             vdwjidx0A        = 2*vdwtype[jnrA+0];
526             vdwjidx0B        = 2*vdwtype[jnrB+0];
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
533             {
534
535             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq00             = _fjsp_mul_v2r8(iq0,jq0);
539             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
540                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
541
542             /* EWALD ELECTROSTATICS */
543
544             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
545             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
546             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
547             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
548             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
549
550             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
551                                          &ewtabF,&ewtabFn);
552             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
553             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
554
555             /* LENNARD-JONES DISPERSION/REPULSION */
556
557             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
558             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
559
560             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
561
562             fscal            = _fjsp_add_v2r8(felec,fvdw);
563
564             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
565
566             /* Update vectorial force */
567             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
568             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
569             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
570             
571             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
572
573             }
574
575             /* Inner loop uses 49 flops */
576         }
577
578         if(jidx<j_index_end)
579         {
580
581             jnrA             = jjnr[jidx];
582             j_coord_offsetA  = DIM*jnrA;
583
584             /* load j atom coordinates */
585             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
586                                               &jx0,&jy0,&jz0);
587
588             /* Calculate displacement vector */
589             dx00             = _fjsp_sub_v2r8(ix0,jx0);
590             dy00             = _fjsp_sub_v2r8(iy0,jy0);
591             dz00             = _fjsp_sub_v2r8(iz0,jz0);
592
593             /* Calculate squared distance and things based on it */
594             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
595
596             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
597
598             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
599
600             /* Load parameters for j particles */
601             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
602             vdwjidx0A        = 2*vdwtype[jnrA+0];
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
609             {
610
611             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq00             = _fjsp_mul_v2r8(iq0,jq0);
615             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
616                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
617
618             /* EWALD ELECTROSTATICS */
619
620             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
621             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
622             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
623             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
624             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
625
626             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
627             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
628             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
629
630             /* LENNARD-JONES DISPERSION/REPULSION */
631
632             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
633             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
634
635             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
636
637             fscal            = _fjsp_add_v2r8(felec,fvdw);
638
639             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
640
641             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
642
643             /* Update vectorial force */
644             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
645             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
646             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
647             
648             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
649
650             }
651
652             /* Inner loop uses 49 flops */
653         }
654
655         /* End of innermost loop */
656
657         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
658                                               f+i_coord_offset,fshift+i_shift_offset);
659
660         /* Increment number of inner iterations */
661         inneriter                  += j_index_end - j_index_start;
662
663         /* Outer loop uses 7 flops */
664     }
665
666     /* Increment number of outer iterations */
667     outeriter        += nri;
668
669     /* Update outer/inner flops */
670
671     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*49);
672 }