Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/legacyheaders/vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LennardJones
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
93     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
94     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     _fjsp_v2r8       itab_tmp;
97     _fjsp_v2r8       dummy_mask,cutoff_mask;
98     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
99     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
100     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
101
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
122     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
127     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
130     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _fjsp_setzero_v2r8();
158         fiy0             = _fjsp_setzero_v2r8();
159         fiz0             = _fjsp_setzero_v2r8();
160
161         /* Load parameters for i particles */
162         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
163         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _fjsp_setzero_v2r8();
167         vvdwsum          = _fjsp_setzero_v2r8();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178
179             /* load j atom coordinates */
180             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _fjsp_sub_v2r8(ix0,jx0);
185             dy00             = _fjsp_sub_v2r8(iy0,jy0);
186             dz00             = _fjsp_sub_v2r8(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
190
191             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
192
193             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
197             vdwjidx0A        = 2*vdwtype[jnrA+0];
198             vdwjidx0B        = 2*vdwtype[jnrB+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
205             {
206
207             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _fjsp_mul_v2r8(iq0,jq0);
211             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
213
214             /* EWALD ELECTROSTATICS */
215
216             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
217             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
218             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
219             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
220             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
221
222             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
223             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
224             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
225             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
226             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
227             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
228             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
229             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
230             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
231             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
232
233             /* LENNARD-JONES DISPERSION/REPULSION */
234
235             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
236             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
237             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
238             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
239                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
240             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
241
242             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
246             velecsum         = _fjsp_add_v2r8(velecsum,velec);
247             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
248             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
249
250             fscal            = _fjsp_add_v2r8(felec,fvdw);
251
252             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
253
254             /* Update vectorial force */
255             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
256             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
257             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
258             
259             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
260
261             }
262
263             /* Inner loop uses 67 flops */
264         }
265
266         if(jidx<j_index_end)
267         {
268
269             jnrA             = jjnr[jidx];
270             j_coord_offsetA  = DIM*jnrA;
271
272             /* load j atom coordinates */
273             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
274                                               &jx0,&jy0,&jz0);
275
276             /* Calculate displacement vector */
277             dx00             = _fjsp_sub_v2r8(ix0,jx0);
278             dy00             = _fjsp_sub_v2r8(iy0,jy0);
279             dz00             = _fjsp_sub_v2r8(iz0,jz0);
280
281             /* Calculate squared distance and things based on it */
282             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
283
284             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
285
286             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
287
288             /* Load parameters for j particles */
289             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
290             vdwjidx0A        = 2*vdwtype[jnrA+0];
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
297             {
298
299             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq00             = _fjsp_mul_v2r8(iq0,jq0);
303             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
304                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
310             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
311             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
312             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
313
314             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
315             ewtabD           = _fjsp_setzero_v2r8();
316             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
317             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
318             ewtabFn          = _fjsp_setzero_v2r8();
319             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
320             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
321             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
322             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
323             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
324
325             /* LENNARD-JONES DISPERSION/REPULSION */
326
327             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
328             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
329             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
330             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
331                                            _fjsp_mul_v2r8(_fjsp_nmsub_v2r8( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
332             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
333
334             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
338             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
339             velecsum         = _fjsp_add_v2r8(velecsum,velec);
340             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
341             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
342             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
343
344             fscal            = _fjsp_add_v2r8(felec,fvdw);
345
346             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
347
348             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
349
350             /* Update vectorial force */
351             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
352             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
353             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
354             
355             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
356
357             }
358
359             /* Inner loop uses 67 flops */
360         }
361
362         /* End of innermost loop */
363
364         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
365                                               f+i_coord_offset,fshift+i_shift_offset);
366
367         ggid                        = gid[iidx];
368         /* Update potential energies */
369         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
370         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
371
372         /* Increment number of inner iterations */
373         inneriter                  += j_index_end - j_index_start;
374
375         /* Outer loop uses 9 flops */
376     }
377
378     /* Increment number of outer iterations */
379     outeriter        += nri;
380
381     /* Update outer/inner flops */
382
383     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*67);
384 }
385 /*
386  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sparc64_hpc_ace_double
387  * Electrostatics interaction: Ewald
388  * VdW interaction:            LennardJones
389  * Geometry:                   Particle-Particle
390  * Calculate force/pot:        Force
391  */
392 void
393 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sparc64_hpc_ace_double
394                     (t_nblist                    * gmx_restrict       nlist,
395                      rvec                        * gmx_restrict          xx,
396                      rvec                        * gmx_restrict          ff,
397                      t_forcerec                  * gmx_restrict          fr,
398                      t_mdatoms                   * gmx_restrict     mdatoms,
399                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
400                      t_nrnb                      * gmx_restrict        nrnb)
401 {
402     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
403      * just 0 for non-waters.
404      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
405      * jnr indices corresponding to data put in the four positions in the SIMD register.
406      */
407     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
408     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
409     int              jnrA,jnrB;
410     int              j_coord_offsetA,j_coord_offsetB;
411     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
412     real             rcutoff_scalar;
413     real             *shiftvec,*fshift,*x,*f;
414     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
415     int              vdwioffset0;
416     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
417     int              vdwjidx0A,vdwjidx0B;
418     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
419     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
420     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
421     real             *charge;
422     int              nvdwtype;
423     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
424     int              *vdwtype;
425     real             *vdwparam;
426     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
427     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
428     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
429     real             *ewtab;
430     _fjsp_v2r8       itab_tmp;
431     _fjsp_v2r8       dummy_mask,cutoff_mask;
432     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
433     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
434     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
435
436     x                = xx[0];
437     f                = ff[0];
438
439     nri              = nlist->nri;
440     iinr             = nlist->iinr;
441     jindex           = nlist->jindex;
442     jjnr             = nlist->jjnr;
443     shiftidx         = nlist->shift;
444     gid              = nlist->gid;
445     shiftvec         = fr->shift_vec[0];
446     fshift           = fr->fshift[0];
447     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
448     charge           = mdatoms->chargeA;
449     nvdwtype         = fr->ntype;
450     vdwparam         = fr->nbfp;
451     vdwtype          = mdatoms->typeA;
452
453     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
454     ewtab            = fr->ic->tabq_coul_F;
455     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
456     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
457
458     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
459     rcutoff_scalar   = fr->rcoulomb;
460     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
461     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
462
463     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
464     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
465
466     /* Avoid stupid compiler warnings */
467     jnrA = jnrB = 0;
468     j_coord_offsetA = 0;
469     j_coord_offsetB = 0;
470
471     outeriter        = 0;
472     inneriter        = 0;
473
474     /* Start outer loop over neighborlists */
475     for(iidx=0; iidx<nri; iidx++)
476     {
477         /* Load shift vector for this list */
478         i_shift_offset   = DIM*shiftidx[iidx];
479
480         /* Load limits for loop over neighbors */
481         j_index_start    = jindex[iidx];
482         j_index_end      = jindex[iidx+1];
483
484         /* Get outer coordinate index */
485         inr              = iinr[iidx];
486         i_coord_offset   = DIM*inr;
487
488         /* Load i particle coords and add shift vector */
489         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
490
491         fix0             = _fjsp_setzero_v2r8();
492         fiy0             = _fjsp_setzero_v2r8();
493         fiz0             = _fjsp_setzero_v2r8();
494
495         /* Load parameters for i particles */
496         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
497         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
498
499         /* Start inner kernel loop */
500         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
501         {
502
503             /* Get j neighbor index, and coordinate index */
504             jnrA             = jjnr[jidx];
505             jnrB             = jjnr[jidx+1];
506             j_coord_offsetA  = DIM*jnrA;
507             j_coord_offsetB  = DIM*jnrB;
508
509             /* load j atom coordinates */
510             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
511                                               &jx0,&jy0,&jz0);
512
513             /* Calculate displacement vector */
514             dx00             = _fjsp_sub_v2r8(ix0,jx0);
515             dy00             = _fjsp_sub_v2r8(iy0,jy0);
516             dz00             = _fjsp_sub_v2r8(iz0,jz0);
517
518             /* Calculate squared distance and things based on it */
519             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
520
521             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
522
523             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
524
525             /* Load parameters for j particles */
526             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528             vdwjidx0B        = 2*vdwtype[jnrB+0];
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
535             {
536
537             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq00             = _fjsp_mul_v2r8(iq0,jq0);
541             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
542                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
543
544             /* EWALD ELECTROSTATICS */
545
546             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
547             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
548             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
549             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
550             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
551
552             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
553                                          &ewtabF,&ewtabFn);
554             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
555             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
556
557             /* LENNARD-JONES DISPERSION/REPULSION */
558
559             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
560             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
561
562             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
563
564             fscal            = _fjsp_add_v2r8(felec,fvdw);
565
566             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
567
568             /* Update vectorial force */
569             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
570             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
571             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
572             
573             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
574
575             }
576
577             /* Inner loop uses 49 flops */
578         }
579
580         if(jidx<j_index_end)
581         {
582
583             jnrA             = jjnr[jidx];
584             j_coord_offsetA  = DIM*jnrA;
585
586             /* load j atom coordinates */
587             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
588                                               &jx0,&jy0,&jz0);
589
590             /* Calculate displacement vector */
591             dx00             = _fjsp_sub_v2r8(ix0,jx0);
592             dy00             = _fjsp_sub_v2r8(iy0,jy0);
593             dz00             = _fjsp_sub_v2r8(iz0,jz0);
594
595             /* Calculate squared distance and things based on it */
596             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
597
598             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
599
600             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
601
602             /* Load parameters for j particles */
603             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
604             vdwjidx0A        = 2*vdwtype[jnrA+0];
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
611             {
612
613             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq00             = _fjsp_mul_v2r8(iq0,jq0);
617             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
618                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
619
620             /* EWALD ELECTROSTATICS */
621
622             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
623             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
624             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
625             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
626             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
627
628             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
629             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
630             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
631
632             /* LENNARD-JONES DISPERSION/REPULSION */
633
634             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
635             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
636
637             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
638
639             fscal            = _fjsp_add_v2r8(felec,fvdw);
640
641             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
642
643             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
644
645             /* Update vectorial force */
646             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
647             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
648             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
649             
650             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
651
652             }
653
654             /* Inner loop uses 49 flops */
655         }
656
657         /* End of innermost loop */
658
659         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
660                                               f+i_coord_offset,fshift+i_shift_offset);
661
662         /* Increment number of inner iterations */
663         inneriter                  += j_index_end - j_index_start;
664
665         /* Outer loop uses 7 flops */
666     }
667
668     /* Increment number of outer iterations */
669     outeriter        += nri;
670
671     /* Update outer/inner flops */
672
673     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*49);
674 }