Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Water4-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwioffset3;
88     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx0A,vdwjidx0B;
90     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
95     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
102     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
103     _fjsp_v2r8           c6grid_00;
104     _fjsp_v2r8           c6grid_10;
105     _fjsp_v2r8           c6grid_20;
106     _fjsp_v2r8           c6grid_30;
107     real                 *vdwgridparam;
108     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
110     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
111     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     _fjsp_v2r8       itab_tmp;
114     _fjsp_v2r8       dummy_mask,cutoff_mask;
115     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
116     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
117     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
118
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
137     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
138     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
139
140     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
143     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
148     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
149     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
153     rcutoff_scalar   = fr->rcoulomb;
154     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
155     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
156
157     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
158     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164
165     outeriter        = 0;
166     inneriter        = 0;
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
185
186         fix0             = _fjsp_setzero_v2r8();
187         fiy0             = _fjsp_setzero_v2r8();
188         fiz0             = _fjsp_setzero_v2r8();
189         fix1             = _fjsp_setzero_v2r8();
190         fiy1             = _fjsp_setzero_v2r8();
191         fiz1             = _fjsp_setzero_v2r8();
192         fix2             = _fjsp_setzero_v2r8();
193         fiy2             = _fjsp_setzero_v2r8();
194         fiz2             = _fjsp_setzero_v2r8();
195         fix3             = _fjsp_setzero_v2r8();
196         fiy3             = _fjsp_setzero_v2r8();
197         fiz3             = _fjsp_setzero_v2r8();
198
199         /* Reset potential sums */
200         velecsum         = _fjsp_setzero_v2r8();
201         vvdwsum          = _fjsp_setzero_v2r8();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212
213             /* load j atom coordinates */
214             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _fjsp_sub_v2r8(ix0,jx0);
219             dy00             = _fjsp_sub_v2r8(iy0,jy0);
220             dz00             = _fjsp_sub_v2r8(iz0,jz0);
221             dx10             = _fjsp_sub_v2r8(ix1,jx0);
222             dy10             = _fjsp_sub_v2r8(iy1,jy0);
223             dz10             = _fjsp_sub_v2r8(iz1,jz0);
224             dx20             = _fjsp_sub_v2r8(ix2,jx0);
225             dy20             = _fjsp_sub_v2r8(iy2,jy0);
226             dz20             = _fjsp_sub_v2r8(iz2,jz0);
227             dx30             = _fjsp_sub_v2r8(ix3,jx0);
228             dy30             = _fjsp_sub_v2r8(iy3,jy0);
229             dz30             = _fjsp_sub_v2r8(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
233             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
234             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
235             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
236
237             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
238             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
239             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
240             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
241
242             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
243             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
244             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
245             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251
252             fjx0             = _fjsp_setzero_v2r8();
253             fjy0             = _fjsp_setzero_v2r8();
254             fjz0             = _fjsp_setzero_v2r8();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
261             {
262
263             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
267                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
268
269             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
270                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
271
272             /* Analytical LJ-PME */
273             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
274             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
275             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
276             exponent         = gmx_simd_exp_d(ewcljrsq);
277             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
278             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
279             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
280             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
281             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
282             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
283                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
284             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
285             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
286
287             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
291             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
292
293             fscal            = fvdw;
294
295             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
296
297             /* Update vectorial force */
298             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
299             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
300             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
301             
302             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
303             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
304             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
305
306             }
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
313             {
314
315             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq10             = _fjsp_mul_v2r8(iq1,jq0);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
324             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
325             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
326             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
327
328             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
329             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
330             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
331             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
332             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
333             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
334             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
335             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
336             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
337             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
338
339             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
343             velecsum         = _fjsp_add_v2r8(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
348
349             /* Update vectorial force */
350             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
351             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
352             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
353             
354             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
355             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
356             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
357
358             }
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
365             {
366
367             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _fjsp_mul_v2r8(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
376             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
377             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
378             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
379
380             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
381             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
382             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
383             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
384             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
385             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
386             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
387             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
388             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
389             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
390
391             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
395             velecsum         = _fjsp_add_v2r8(velecsum,velec);
396
397             fscal            = felec;
398
399             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
400
401             /* Update vectorial force */
402             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
403             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
404             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
405             
406             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
407             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
408             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
409
410             }
411
412             /**************************
413              * CALCULATE INTERACTIONS *
414              **************************/
415
416             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
417             {
418
419             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
420
421             /* Compute parameters for interactions between i and j atoms */
422             qq30             = _fjsp_mul_v2r8(iq3,jq0);
423
424             /* EWALD ELECTROSTATICS */
425
426             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
427             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
428             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
429             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
430             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
431
432             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
433             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
434             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
435             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
436             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
437             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
438             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
439             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
440             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv30,sh_ewald),velec));
441             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
442
443             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
444
445             /* Update potential sum for this i atom from the interaction with this j atom. */
446             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
447             velecsum         = _fjsp_add_v2r8(velecsum,velec);
448
449             fscal            = felec;
450
451             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
452
453             /* Update vectorial force */
454             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
455             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
456             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
457             
458             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
459             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
460             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
461
462             }
463
464             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
465
466             /* Inner loop uses 209 flops */
467         }
468
469         if(jidx<j_index_end)
470         {
471
472             jnrA             = jjnr[jidx];
473             j_coord_offsetA  = DIM*jnrA;
474
475             /* load j atom coordinates */
476             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
477                                               &jx0,&jy0,&jz0);
478
479             /* Calculate displacement vector */
480             dx00             = _fjsp_sub_v2r8(ix0,jx0);
481             dy00             = _fjsp_sub_v2r8(iy0,jy0);
482             dz00             = _fjsp_sub_v2r8(iz0,jz0);
483             dx10             = _fjsp_sub_v2r8(ix1,jx0);
484             dy10             = _fjsp_sub_v2r8(iy1,jy0);
485             dz10             = _fjsp_sub_v2r8(iz1,jz0);
486             dx20             = _fjsp_sub_v2r8(ix2,jx0);
487             dy20             = _fjsp_sub_v2r8(iy2,jy0);
488             dz20             = _fjsp_sub_v2r8(iz2,jz0);
489             dx30             = _fjsp_sub_v2r8(ix3,jx0);
490             dy30             = _fjsp_sub_v2r8(iy3,jy0);
491             dz30             = _fjsp_sub_v2r8(iz3,jz0);
492
493             /* Calculate squared distance and things based on it */
494             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
495             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
496             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
497             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
498
499             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
500             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
501             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
502             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
503
504             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
505             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
506             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
507             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
508
509             /* Load parameters for j particles */
510             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
511             vdwjidx0A        = 2*vdwtype[jnrA+0];
512
513             fjx0             = _fjsp_setzero_v2r8();
514             fjy0             = _fjsp_setzero_v2r8();
515             fjz0             = _fjsp_setzero_v2r8();
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
522             {
523
524             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
525
526             /* Compute parameters for interactions between i and j atoms */
527             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
528                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
529
530             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
531                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
532
533             /* Analytical LJ-PME */
534             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
535             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
536             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
537             exponent         = gmx_simd_exp_d(ewcljrsq);
538             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
539             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
540             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
541             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
542             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
543             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
544                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
545             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
546             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
547
548             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
552             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
553             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
554
555             fscal            = fvdw;
556
557             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
558
559             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
560
561             /* Update vectorial force */
562             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
563             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
564             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
565             
566             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
567             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
568             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
569
570             }
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
577             {
578
579             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq10             = _fjsp_mul_v2r8(iq1,jq0);
583
584             /* EWALD ELECTROSTATICS */
585
586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
588             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
589             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
590             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
591
592             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
593             ewtabD           = _fjsp_setzero_v2r8();
594             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
595             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
596             ewtabFn          = _fjsp_setzero_v2r8();
597             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
598             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
599             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
600             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
601             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
602
603             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
607             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
608             velecsum         = _fjsp_add_v2r8(velecsum,velec);
609
610             fscal            = felec;
611
612             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
613
614             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
615
616             /* Update vectorial force */
617             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
618             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
619             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
620             
621             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
622             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
623             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
624
625             }
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
632             {
633
634             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq20             = _fjsp_mul_v2r8(iq2,jq0);
638
639             /* EWALD ELECTROSTATICS */
640
641             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
642             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
643             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
644             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
645             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
646
647             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
648             ewtabD           = _fjsp_setzero_v2r8();
649             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
650             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
651             ewtabFn          = _fjsp_setzero_v2r8();
652             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
653             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
654             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
655             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
656             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
657
658             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
659
660             /* Update potential sum for this i atom from the interaction with this j atom. */
661             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
662             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
663             velecsum         = _fjsp_add_v2r8(velecsum,velec);
664
665             fscal            = felec;
666
667             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
668
669             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
670
671             /* Update vectorial force */
672             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
673             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
674             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
675             
676             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
677             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
678             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
679
680             }
681
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
687             {
688
689             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
690
691             /* Compute parameters for interactions between i and j atoms */
692             qq30             = _fjsp_mul_v2r8(iq3,jq0);
693
694             /* EWALD ELECTROSTATICS */
695
696             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
697             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
698             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
699             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
700             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
701
702             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
703             ewtabD           = _fjsp_setzero_v2r8();
704             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
705             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
706             ewtabFn          = _fjsp_setzero_v2r8();
707             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
708             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
709             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
710             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv30,sh_ewald),velec));
711             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
712
713             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
714
715             /* Update potential sum for this i atom from the interaction with this j atom. */
716             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
717             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
718             velecsum         = _fjsp_add_v2r8(velecsum,velec);
719
720             fscal            = felec;
721
722             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
723
724             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
725
726             /* Update vectorial force */
727             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
728             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
729             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
730             
731             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
732             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
733             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
734
735             }
736
737             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
738
739             /* Inner loop uses 209 flops */
740         }
741
742         /* End of innermost loop */
743
744         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
745                                               f+i_coord_offset,fshift+i_shift_offset);
746
747         ggid                        = gid[iidx];
748         /* Update potential energies */
749         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
750         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
751
752         /* Increment number of inner iterations */
753         inneriter                  += j_index_end - j_index_start;
754
755         /* Outer loop uses 26 flops */
756     }
757
758     /* Increment number of outer iterations */
759     outeriter        += nri;
760
761     /* Update outer/inner flops */
762
763     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*209);
764 }
765 /*
766  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sparc64_hpc_ace_double
767  * Electrostatics interaction: Ewald
768  * VdW interaction:            LJEwald
769  * Geometry:                   Water4-Particle
770  * Calculate force/pot:        Force
771  */
772 void
773 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sparc64_hpc_ace_double
774                     (t_nblist                    * gmx_restrict       nlist,
775                      rvec                        * gmx_restrict          xx,
776                      rvec                        * gmx_restrict          ff,
777                      t_forcerec                  * gmx_restrict          fr,
778                      t_mdatoms                   * gmx_restrict     mdatoms,
779                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
780                      t_nrnb                      * gmx_restrict        nrnb)
781 {
782     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
783      * just 0 for non-waters.
784      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
785      * jnr indices corresponding to data put in the four positions in the SIMD register.
786      */
787     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
788     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
789     int              jnrA,jnrB;
790     int              j_coord_offsetA,j_coord_offsetB;
791     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
792     real             rcutoff_scalar;
793     real             *shiftvec,*fshift,*x,*f;
794     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
795     int              vdwioffset0;
796     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
797     int              vdwioffset1;
798     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
799     int              vdwioffset2;
800     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
801     int              vdwioffset3;
802     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
803     int              vdwjidx0A,vdwjidx0B;
804     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
805     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
806     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
807     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
808     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
809     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
810     real             *charge;
811     int              nvdwtype;
812     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
813     int              *vdwtype;
814     real             *vdwparam;
815     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
816     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
817     _fjsp_v2r8           c6grid_00;
818     _fjsp_v2r8           c6grid_10;
819     _fjsp_v2r8           c6grid_20;
820     _fjsp_v2r8           c6grid_30;
821     real                 *vdwgridparam;
822     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
823     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
824     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
825     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
826     real             *ewtab;
827     _fjsp_v2r8       itab_tmp;
828     _fjsp_v2r8       dummy_mask,cutoff_mask;
829     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
830     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
831     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
832
833     x                = xx[0];
834     f                = ff[0];
835
836     nri              = nlist->nri;
837     iinr             = nlist->iinr;
838     jindex           = nlist->jindex;
839     jjnr             = nlist->jjnr;
840     shiftidx         = nlist->shift;
841     gid              = nlist->gid;
842     shiftvec         = fr->shift_vec[0];
843     fshift           = fr->fshift[0];
844     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
845     charge           = mdatoms->chargeA;
846     nvdwtype         = fr->ntype;
847     vdwparam         = fr->nbfp;
848     vdwtype          = mdatoms->typeA;
849     vdwgridparam     = fr->ljpme_c6grid;
850     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
851     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
852     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
853
854     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
855     ewtab            = fr->ic->tabq_coul_F;
856     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
857     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
858
859     /* Setup water-specific parameters */
860     inr              = nlist->iinr[0];
861     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
862     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
863     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
864     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
865
866     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
867     rcutoff_scalar   = fr->rcoulomb;
868     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
869     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
870
871     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
872     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
873
874     /* Avoid stupid compiler warnings */
875     jnrA = jnrB = 0;
876     j_coord_offsetA = 0;
877     j_coord_offsetB = 0;
878
879     outeriter        = 0;
880     inneriter        = 0;
881
882     /* Start outer loop over neighborlists */
883     for(iidx=0; iidx<nri; iidx++)
884     {
885         /* Load shift vector for this list */
886         i_shift_offset   = DIM*shiftidx[iidx];
887
888         /* Load limits for loop over neighbors */
889         j_index_start    = jindex[iidx];
890         j_index_end      = jindex[iidx+1];
891
892         /* Get outer coordinate index */
893         inr              = iinr[iidx];
894         i_coord_offset   = DIM*inr;
895
896         /* Load i particle coords and add shift vector */
897         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
898                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
899
900         fix0             = _fjsp_setzero_v2r8();
901         fiy0             = _fjsp_setzero_v2r8();
902         fiz0             = _fjsp_setzero_v2r8();
903         fix1             = _fjsp_setzero_v2r8();
904         fiy1             = _fjsp_setzero_v2r8();
905         fiz1             = _fjsp_setzero_v2r8();
906         fix2             = _fjsp_setzero_v2r8();
907         fiy2             = _fjsp_setzero_v2r8();
908         fiz2             = _fjsp_setzero_v2r8();
909         fix3             = _fjsp_setzero_v2r8();
910         fiy3             = _fjsp_setzero_v2r8();
911         fiz3             = _fjsp_setzero_v2r8();
912
913         /* Start inner kernel loop */
914         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
915         {
916
917             /* Get j neighbor index, and coordinate index */
918             jnrA             = jjnr[jidx];
919             jnrB             = jjnr[jidx+1];
920             j_coord_offsetA  = DIM*jnrA;
921             j_coord_offsetB  = DIM*jnrB;
922
923             /* load j atom coordinates */
924             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
925                                               &jx0,&jy0,&jz0);
926
927             /* Calculate displacement vector */
928             dx00             = _fjsp_sub_v2r8(ix0,jx0);
929             dy00             = _fjsp_sub_v2r8(iy0,jy0);
930             dz00             = _fjsp_sub_v2r8(iz0,jz0);
931             dx10             = _fjsp_sub_v2r8(ix1,jx0);
932             dy10             = _fjsp_sub_v2r8(iy1,jy0);
933             dz10             = _fjsp_sub_v2r8(iz1,jz0);
934             dx20             = _fjsp_sub_v2r8(ix2,jx0);
935             dy20             = _fjsp_sub_v2r8(iy2,jy0);
936             dz20             = _fjsp_sub_v2r8(iz2,jz0);
937             dx30             = _fjsp_sub_v2r8(ix3,jx0);
938             dy30             = _fjsp_sub_v2r8(iy3,jy0);
939             dz30             = _fjsp_sub_v2r8(iz3,jz0);
940
941             /* Calculate squared distance and things based on it */
942             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
943             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
944             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
945             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
946
947             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
948             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
949             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
950             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
951
952             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
953             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
954             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
955             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
956
957             /* Load parameters for j particles */
958             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
959             vdwjidx0A        = 2*vdwtype[jnrA+0];
960             vdwjidx0B        = 2*vdwtype[jnrB+0];
961
962             fjx0             = _fjsp_setzero_v2r8();
963             fjy0             = _fjsp_setzero_v2r8();
964             fjz0             = _fjsp_setzero_v2r8();
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
971             {
972
973             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
974
975             /* Compute parameters for interactions between i and j atoms */
976             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
977                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
978
979             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
980                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
981
982             /* Analytical LJ-PME */
983             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
984             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
985             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
986             exponent         = gmx_simd_exp_d(ewcljrsq);
987             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
988             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
989             /* f6A = 6 * C6grid * (1 - poly) */
990             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
991             /* f6B = C6grid * exponent * beta^6 */
992             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
993             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
994             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
995
996             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
997
998             fscal            = fvdw;
999
1000             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1001
1002             /* Update vectorial force */
1003             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1004             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1005             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1006             
1007             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1008             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1009             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1010
1011             }
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1018             {
1019
1020             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1024
1025             /* EWALD ELECTROSTATICS */
1026
1027             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1028             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1029             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1030             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1031             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1032
1033             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1034                                          &ewtabF,&ewtabFn);
1035             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1036             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1037
1038             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1039
1040             fscal            = felec;
1041
1042             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1043
1044             /* Update vectorial force */
1045             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1046             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1047             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1048             
1049             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1050             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1051             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1052
1053             }
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1060             {
1061
1062             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1063
1064             /* Compute parameters for interactions between i and j atoms */
1065             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1066
1067             /* EWALD ELECTROSTATICS */
1068
1069             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1070             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1071             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1072             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1073             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1074
1075             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1076                                          &ewtabF,&ewtabFn);
1077             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1078             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1079
1080             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1081
1082             fscal            = felec;
1083
1084             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1085
1086             /* Update vectorial force */
1087             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1088             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1089             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1090             
1091             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1092             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1093             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1094
1095             }
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
1102             {
1103
1104             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1105
1106             /* Compute parameters for interactions between i and j atoms */
1107             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1108
1109             /* EWALD ELECTROSTATICS */
1110
1111             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1112             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1113             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1114             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1115             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1116
1117             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1118                                          &ewtabF,&ewtabFn);
1119             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1120             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1121
1122             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
1123
1124             fscal            = felec;
1125
1126             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1127
1128             /* Update vectorial force */
1129             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1130             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1131             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1132             
1133             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1134             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1135             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1136
1137             }
1138
1139             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1140
1141             /* Inner loop uses 180 flops */
1142         }
1143
1144         if(jidx<j_index_end)
1145         {
1146
1147             jnrA             = jjnr[jidx];
1148             j_coord_offsetA  = DIM*jnrA;
1149
1150             /* load j atom coordinates */
1151             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1152                                               &jx0,&jy0,&jz0);
1153
1154             /* Calculate displacement vector */
1155             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1156             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1157             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1158             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1159             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1160             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1161             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1162             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1163             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1164             dx30             = _fjsp_sub_v2r8(ix3,jx0);
1165             dy30             = _fjsp_sub_v2r8(iy3,jy0);
1166             dz30             = _fjsp_sub_v2r8(iz3,jz0);
1167
1168             /* Calculate squared distance and things based on it */
1169             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1170             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1171             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1172             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
1173
1174             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1175             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1176             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1177             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
1178
1179             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1180             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1181             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1182             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
1183
1184             /* Load parameters for j particles */
1185             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1186             vdwjidx0A        = 2*vdwtype[jnrA+0];
1187
1188             fjx0             = _fjsp_setzero_v2r8();
1189             fjy0             = _fjsp_setzero_v2r8();
1190             fjz0             = _fjsp_setzero_v2r8();
1191
1192             /**************************
1193              * CALCULATE INTERACTIONS *
1194              **************************/
1195
1196             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1197             {
1198
1199             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1200
1201             /* Compute parameters for interactions between i and j atoms */
1202             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1203                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1204
1205             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
1206                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
1207
1208             /* Analytical LJ-PME */
1209             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1210             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
1211             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
1212             exponent         = gmx_simd_exp_d(ewcljrsq);
1213             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1214             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
1215             /* f6A = 6 * C6grid * (1 - poly) */
1216             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
1217             /* f6B = C6grid * exponent * beta^6 */
1218             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
1219             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1220             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1221
1222             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1223
1224             fscal            = fvdw;
1225
1226             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1227
1228             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1229
1230             /* Update vectorial force */
1231             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1232             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1233             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1234             
1235             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1236             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1237             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1238
1239             }
1240
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1246             {
1247
1248             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1249
1250             /* Compute parameters for interactions between i and j atoms */
1251             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1252
1253             /* EWALD ELECTROSTATICS */
1254
1255             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1256             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1257             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1258             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1259             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1260
1261             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1262             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1263             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1264
1265             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1266
1267             fscal            = felec;
1268
1269             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1270
1271             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1272
1273             /* Update vectorial force */
1274             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1275             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1276             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1277             
1278             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1279             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1280             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1281
1282             }
1283
1284             /**************************
1285              * CALCULATE INTERACTIONS *
1286              **************************/
1287
1288             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1289             {
1290
1291             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1292
1293             /* Compute parameters for interactions between i and j atoms */
1294             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1295
1296             /* EWALD ELECTROSTATICS */
1297
1298             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1299             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1300             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1301             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1302             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1303
1304             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1305             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1306             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1307
1308             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1309
1310             fscal            = felec;
1311
1312             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1313
1314             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1315
1316             /* Update vectorial force */
1317             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1318             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1319             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1320             
1321             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1322             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1323             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1324
1325             }
1326
1327             /**************************
1328              * CALCULATE INTERACTIONS *
1329              **************************/
1330
1331             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
1332             {
1333
1334             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1335
1336             /* Compute parameters for interactions between i and j atoms */
1337             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1338
1339             /* EWALD ELECTROSTATICS */
1340
1341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1342             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1343             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1344             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1345             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1346
1347             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1348             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1349             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1350
1351             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
1352
1353             fscal            = felec;
1354
1355             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1356
1357             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1358
1359             /* Update vectorial force */
1360             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1361             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1362             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1363             
1364             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1365             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1366             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1367
1368             }
1369
1370             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1371
1372             /* Inner loop uses 180 flops */
1373         }
1374
1375         /* End of innermost loop */
1376
1377         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1378                                               f+i_coord_offset,fshift+i_shift_offset);
1379
1380         /* Increment number of inner iterations */
1381         inneriter                  += j_index_end - j_index_start;
1382
1383         /* Outer loop uses 24 flops */
1384     }
1385
1386     /* Increment number of outer iterations */
1387     outeriter        += nri;
1388
1389     /* Update outer/inner flops */
1390
1391     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*180);
1392 }