Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
100     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
101     _fjsp_v2r8           c6grid_00;
102     _fjsp_v2r8           c6grid_10;
103     _fjsp_v2r8           c6grid_20;
104     _fjsp_v2r8           c6grid_30;
105     real                 *vdwgridparam;
106     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
108     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
109     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     _fjsp_v2r8       itab_tmp;
112     _fjsp_v2r8       dummy_mask,cutoff_mask;
113     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
114     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
115     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
116
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
135     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
136     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
137
138     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
141     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
146     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
147     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151     rcutoff_scalar   = fr->rcoulomb;
152     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
153     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
154
155     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
156     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
157
158     /* Avoid stupid compiler warnings */
159     jnrA = jnrB = 0;
160     j_coord_offsetA = 0;
161     j_coord_offsetB = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
183
184         fix0             = _fjsp_setzero_v2r8();
185         fiy0             = _fjsp_setzero_v2r8();
186         fiz0             = _fjsp_setzero_v2r8();
187         fix1             = _fjsp_setzero_v2r8();
188         fiy1             = _fjsp_setzero_v2r8();
189         fiz1             = _fjsp_setzero_v2r8();
190         fix2             = _fjsp_setzero_v2r8();
191         fiy2             = _fjsp_setzero_v2r8();
192         fiz2             = _fjsp_setzero_v2r8();
193         fix3             = _fjsp_setzero_v2r8();
194         fiy3             = _fjsp_setzero_v2r8();
195         fiz3             = _fjsp_setzero_v2r8();
196
197         /* Reset potential sums */
198         velecsum         = _fjsp_setzero_v2r8();
199         vvdwsum          = _fjsp_setzero_v2r8();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             j_coord_offsetA  = DIM*jnrA;
209             j_coord_offsetB  = DIM*jnrB;
210
211             /* load j atom coordinates */
212             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
213                                               &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _fjsp_sub_v2r8(ix0,jx0);
217             dy00             = _fjsp_sub_v2r8(iy0,jy0);
218             dz00             = _fjsp_sub_v2r8(iz0,jz0);
219             dx10             = _fjsp_sub_v2r8(ix1,jx0);
220             dy10             = _fjsp_sub_v2r8(iy1,jy0);
221             dz10             = _fjsp_sub_v2r8(iz1,jz0);
222             dx20             = _fjsp_sub_v2r8(ix2,jx0);
223             dy20             = _fjsp_sub_v2r8(iy2,jy0);
224             dz20             = _fjsp_sub_v2r8(iz2,jz0);
225             dx30             = _fjsp_sub_v2r8(ix3,jx0);
226             dy30             = _fjsp_sub_v2r8(iy3,jy0);
227             dz30             = _fjsp_sub_v2r8(iz3,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
231             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
232             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
233             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
234
235             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
236             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
237             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
238             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
239
240             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
241             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
242             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
243             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249
250             fjx0             = _fjsp_setzero_v2r8();
251             fjy0             = _fjsp_setzero_v2r8();
252             fjz0             = _fjsp_setzero_v2r8();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
259             {
260
261             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
265                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
266
267             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
268                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
269
270             /* Analytical LJ-PME */
271             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
272             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
273             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
274             exponent         = gmx_simd_exp_d(-ewcljrsq);
275             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
276             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
277             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
278             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
279             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
280             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
281                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
282             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
283             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
284
285             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
289             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
290
291             fscal            = fvdw;
292
293             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
294
295             /* Update vectorial force */
296             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
297             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
298             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
299             
300             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
301             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
302             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
303
304             }
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
311             {
312
313             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq10             = _fjsp_mul_v2r8(iq1,jq0);
317
318             /* EWALD ELECTROSTATICS */
319
320             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
321             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
322             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
323             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
324             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
325
326             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
327             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
328             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
329             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
330             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
331             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
332             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
333             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
334             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
335             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
336
337             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
341             velecsum         = _fjsp_add_v2r8(velecsum,velec);
342
343             fscal            = felec;
344
345             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
346
347             /* Update vectorial force */
348             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
349             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
350             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
351             
352             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
353             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
354             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
355
356             }
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
363             {
364
365             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq20             = _fjsp_mul_v2r8(iq2,jq0);
369
370             /* EWALD ELECTROSTATICS */
371
372             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
373             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
374             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
375             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
376             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
377
378             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
379             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
380             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
381             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
382             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
383             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
384             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
385             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
386             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
387             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
388
389             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
393             velecsum         = _fjsp_add_v2r8(velecsum,velec);
394
395             fscal            = felec;
396
397             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
398
399             /* Update vectorial force */
400             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
401             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
402             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
403             
404             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
405             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
406             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
407
408             }
409
410             /**************************
411              * CALCULATE INTERACTIONS *
412              **************************/
413
414             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
415             {
416
417             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
418
419             /* Compute parameters for interactions between i and j atoms */
420             qq30             = _fjsp_mul_v2r8(iq3,jq0);
421
422             /* EWALD ELECTROSTATICS */
423
424             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
425             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
426             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
427             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
428             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
429
430             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
431             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
432             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
433             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
434             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
435             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
436             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
437             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
438             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv30,sh_ewald),velec));
439             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
440
441             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
445             velecsum         = _fjsp_add_v2r8(velecsum,velec);
446
447             fscal            = felec;
448
449             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
450
451             /* Update vectorial force */
452             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
453             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
454             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
455             
456             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
457             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
458             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
459
460             }
461
462             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
463
464             /* Inner loop uses 209 flops */
465         }
466
467         if(jidx<j_index_end)
468         {
469
470             jnrA             = jjnr[jidx];
471             j_coord_offsetA  = DIM*jnrA;
472
473             /* load j atom coordinates */
474             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
475                                               &jx0,&jy0,&jz0);
476
477             /* Calculate displacement vector */
478             dx00             = _fjsp_sub_v2r8(ix0,jx0);
479             dy00             = _fjsp_sub_v2r8(iy0,jy0);
480             dz00             = _fjsp_sub_v2r8(iz0,jz0);
481             dx10             = _fjsp_sub_v2r8(ix1,jx0);
482             dy10             = _fjsp_sub_v2r8(iy1,jy0);
483             dz10             = _fjsp_sub_v2r8(iz1,jz0);
484             dx20             = _fjsp_sub_v2r8(ix2,jx0);
485             dy20             = _fjsp_sub_v2r8(iy2,jy0);
486             dz20             = _fjsp_sub_v2r8(iz2,jz0);
487             dx30             = _fjsp_sub_v2r8(ix3,jx0);
488             dy30             = _fjsp_sub_v2r8(iy3,jy0);
489             dz30             = _fjsp_sub_v2r8(iz3,jz0);
490
491             /* Calculate squared distance and things based on it */
492             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
493             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
494             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
495             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
496
497             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
498             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
499             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
500             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
501
502             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
503             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
504             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
505             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
506
507             /* Load parameters for j particles */
508             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
509             vdwjidx0A        = 2*vdwtype[jnrA+0];
510
511             fjx0             = _fjsp_setzero_v2r8();
512             fjy0             = _fjsp_setzero_v2r8();
513             fjz0             = _fjsp_setzero_v2r8();
514
515             /**************************
516              * CALCULATE INTERACTIONS *
517              **************************/
518
519             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
520             {
521
522             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
523
524             /* Compute parameters for interactions between i and j atoms */
525             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
526
527             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
528
529             /* Analytical LJ-PME */
530             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
531             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
532             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
533             exponent         = gmx_simd_exp_d(-ewcljrsq);
534             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
535             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
536             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
537             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
538             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
539             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
540                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
541             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
542             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
543
544             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
548             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
549             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
550
551             fscal            = fvdw;
552
553             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
554
555             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
556
557             /* Update vectorial force */
558             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
559             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
560             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
561             
562             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
563             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
564             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
565
566             }
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
573             {
574
575             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
576
577             /* Compute parameters for interactions between i and j atoms */
578             qq10             = _fjsp_mul_v2r8(iq1,jq0);
579
580             /* EWALD ELECTROSTATICS */
581
582             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
583             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
584             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
585             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
586             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
587
588             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
589             ewtabD           = _fjsp_setzero_v2r8();
590             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
591             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
592             ewtabFn          = _fjsp_setzero_v2r8();
593             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
594             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
595             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
596             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
597             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
598
599             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
600
601             /* Update potential sum for this i atom from the interaction with this j atom. */
602             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
603             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
604             velecsum         = _fjsp_add_v2r8(velecsum,velec);
605
606             fscal            = felec;
607
608             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
609
610             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
611
612             /* Update vectorial force */
613             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
614             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
615             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
616             
617             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
618             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
619             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
620
621             }
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
628             {
629
630             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
631
632             /* Compute parameters for interactions between i and j atoms */
633             qq20             = _fjsp_mul_v2r8(iq2,jq0);
634
635             /* EWALD ELECTROSTATICS */
636
637             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
638             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
639             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
640             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
641             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
642
643             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
644             ewtabD           = _fjsp_setzero_v2r8();
645             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
646             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
647             ewtabFn          = _fjsp_setzero_v2r8();
648             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
649             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
650             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
651             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
652             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
653
654             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
655
656             /* Update potential sum for this i atom from the interaction with this j atom. */
657             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
658             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
659             velecsum         = _fjsp_add_v2r8(velecsum,velec);
660
661             fscal            = felec;
662
663             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
664
665             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
666
667             /* Update vectorial force */
668             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
669             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
670             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
671             
672             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
673             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
674             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
675
676             }
677
678             /**************************
679              * CALCULATE INTERACTIONS *
680              **************************/
681
682             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
683             {
684
685             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
686
687             /* Compute parameters for interactions between i and j atoms */
688             qq30             = _fjsp_mul_v2r8(iq3,jq0);
689
690             /* EWALD ELECTROSTATICS */
691
692             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
693             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
694             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
695             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
696             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
697
698             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
699             ewtabD           = _fjsp_setzero_v2r8();
700             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
701             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
702             ewtabFn          = _fjsp_setzero_v2r8();
703             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
704             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
705             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
706             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv30,sh_ewald),velec));
707             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
708
709             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
710
711             /* Update potential sum for this i atom from the interaction with this j atom. */
712             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
713             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
714             velecsum         = _fjsp_add_v2r8(velecsum,velec);
715
716             fscal            = felec;
717
718             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
719
720             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
721
722             /* Update vectorial force */
723             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
724             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
725             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
726             
727             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
728             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
729             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
730
731             }
732
733             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
734
735             /* Inner loop uses 209 flops */
736         }
737
738         /* End of innermost loop */
739
740         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
741                                               f+i_coord_offset,fshift+i_shift_offset);
742
743         ggid                        = gid[iidx];
744         /* Update potential energies */
745         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
746         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
747
748         /* Increment number of inner iterations */
749         inneriter                  += j_index_end - j_index_start;
750
751         /* Outer loop uses 26 flops */
752     }
753
754     /* Increment number of outer iterations */
755     outeriter        += nri;
756
757     /* Update outer/inner flops */
758
759     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*209);
760 }
761 /*
762  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sparc64_hpc_ace_double
763  * Electrostatics interaction: Ewald
764  * VdW interaction:            LJEwald
765  * Geometry:                   Water4-Particle
766  * Calculate force/pot:        Force
767  */
768 void
769 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sparc64_hpc_ace_double
770                     (t_nblist                    * gmx_restrict       nlist,
771                      rvec                        * gmx_restrict          xx,
772                      rvec                        * gmx_restrict          ff,
773                      t_forcerec                  * gmx_restrict          fr,
774                      t_mdatoms                   * gmx_restrict     mdatoms,
775                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
776                      t_nrnb                      * gmx_restrict        nrnb)
777 {
778     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
779      * just 0 for non-waters.
780      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
781      * jnr indices corresponding to data put in the four positions in the SIMD register.
782      */
783     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
784     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
785     int              jnrA,jnrB;
786     int              j_coord_offsetA,j_coord_offsetB;
787     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
788     real             rcutoff_scalar;
789     real             *shiftvec,*fshift,*x,*f;
790     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
791     int              vdwioffset0;
792     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
793     int              vdwioffset1;
794     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
795     int              vdwioffset2;
796     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
797     int              vdwioffset3;
798     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
799     int              vdwjidx0A,vdwjidx0B;
800     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
801     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
802     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
803     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
804     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
805     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
806     real             *charge;
807     int              nvdwtype;
808     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
809     int              *vdwtype;
810     real             *vdwparam;
811     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
812     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
813     _fjsp_v2r8           c6grid_00;
814     _fjsp_v2r8           c6grid_10;
815     _fjsp_v2r8           c6grid_20;
816     _fjsp_v2r8           c6grid_30;
817     real                 *vdwgridparam;
818     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
819     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
820     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
821     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
822     real             *ewtab;
823     _fjsp_v2r8       itab_tmp;
824     _fjsp_v2r8       dummy_mask,cutoff_mask;
825     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
826     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
827     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
828
829     x                = xx[0];
830     f                = ff[0];
831
832     nri              = nlist->nri;
833     iinr             = nlist->iinr;
834     jindex           = nlist->jindex;
835     jjnr             = nlist->jjnr;
836     shiftidx         = nlist->shift;
837     gid              = nlist->gid;
838     shiftvec         = fr->shift_vec[0];
839     fshift           = fr->fshift[0];
840     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
841     charge           = mdatoms->chargeA;
842     nvdwtype         = fr->ntype;
843     vdwparam         = fr->nbfp;
844     vdwtype          = mdatoms->typeA;
845     vdwgridparam     = fr->ljpme_c6grid;
846     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
847     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
848     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
849
850     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
851     ewtab            = fr->ic->tabq_coul_F;
852     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
853     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
854
855     /* Setup water-specific parameters */
856     inr              = nlist->iinr[0];
857     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
858     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
859     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
860     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
861
862     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
863     rcutoff_scalar   = fr->rcoulomb;
864     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
865     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
866
867     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
868     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
869
870     /* Avoid stupid compiler warnings */
871     jnrA = jnrB = 0;
872     j_coord_offsetA = 0;
873     j_coord_offsetB = 0;
874
875     outeriter        = 0;
876     inneriter        = 0;
877
878     /* Start outer loop over neighborlists */
879     for(iidx=0; iidx<nri; iidx++)
880     {
881         /* Load shift vector for this list */
882         i_shift_offset   = DIM*shiftidx[iidx];
883
884         /* Load limits for loop over neighbors */
885         j_index_start    = jindex[iidx];
886         j_index_end      = jindex[iidx+1];
887
888         /* Get outer coordinate index */
889         inr              = iinr[iidx];
890         i_coord_offset   = DIM*inr;
891
892         /* Load i particle coords and add shift vector */
893         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
894                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
895
896         fix0             = _fjsp_setzero_v2r8();
897         fiy0             = _fjsp_setzero_v2r8();
898         fiz0             = _fjsp_setzero_v2r8();
899         fix1             = _fjsp_setzero_v2r8();
900         fiy1             = _fjsp_setzero_v2r8();
901         fiz1             = _fjsp_setzero_v2r8();
902         fix2             = _fjsp_setzero_v2r8();
903         fiy2             = _fjsp_setzero_v2r8();
904         fiz2             = _fjsp_setzero_v2r8();
905         fix3             = _fjsp_setzero_v2r8();
906         fiy3             = _fjsp_setzero_v2r8();
907         fiz3             = _fjsp_setzero_v2r8();
908
909         /* Start inner kernel loop */
910         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
911         {
912
913             /* Get j neighbor index, and coordinate index */
914             jnrA             = jjnr[jidx];
915             jnrB             = jjnr[jidx+1];
916             j_coord_offsetA  = DIM*jnrA;
917             j_coord_offsetB  = DIM*jnrB;
918
919             /* load j atom coordinates */
920             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
921                                               &jx0,&jy0,&jz0);
922
923             /* Calculate displacement vector */
924             dx00             = _fjsp_sub_v2r8(ix0,jx0);
925             dy00             = _fjsp_sub_v2r8(iy0,jy0);
926             dz00             = _fjsp_sub_v2r8(iz0,jz0);
927             dx10             = _fjsp_sub_v2r8(ix1,jx0);
928             dy10             = _fjsp_sub_v2r8(iy1,jy0);
929             dz10             = _fjsp_sub_v2r8(iz1,jz0);
930             dx20             = _fjsp_sub_v2r8(ix2,jx0);
931             dy20             = _fjsp_sub_v2r8(iy2,jy0);
932             dz20             = _fjsp_sub_v2r8(iz2,jz0);
933             dx30             = _fjsp_sub_v2r8(ix3,jx0);
934             dy30             = _fjsp_sub_v2r8(iy3,jy0);
935             dz30             = _fjsp_sub_v2r8(iz3,jz0);
936
937             /* Calculate squared distance and things based on it */
938             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
939             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
940             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
941             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
942
943             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
944             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
945             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
946             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
947
948             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
949             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
950             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
951             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
952
953             /* Load parameters for j particles */
954             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
955             vdwjidx0A        = 2*vdwtype[jnrA+0];
956             vdwjidx0B        = 2*vdwtype[jnrB+0];
957
958             fjx0             = _fjsp_setzero_v2r8();
959             fjy0             = _fjsp_setzero_v2r8();
960             fjz0             = _fjsp_setzero_v2r8();
961
962             /**************************
963              * CALCULATE INTERACTIONS *
964              **************************/
965
966             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
967             {
968
969             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
970
971             /* Compute parameters for interactions between i and j atoms */
972             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
973                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
974
975             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
976                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
977
978             /* Analytical LJ-PME */
979             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
980             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
981             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
982             exponent         = gmx_simd_exp_d(-ewcljrsq);
983             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
984             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
985             /* f6A = 6 * C6grid * (1 - poly) */
986             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
987             /* f6B = C6grid * exponent * beta^6 */
988             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
989             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
990             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
991
992             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
993
994             fscal            = fvdw;
995
996             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
997
998             /* Update vectorial force */
999             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1000             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1001             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1002             
1003             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1004             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1005             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1006
1007             }
1008
1009             /**************************
1010              * CALCULATE INTERACTIONS *
1011              **************************/
1012
1013             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1014             {
1015
1016             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1025             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1026             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1027             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1028
1029             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1030                                          &ewtabF,&ewtabFn);
1031             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1032             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1033
1034             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1035
1036             fscal            = felec;
1037
1038             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1039
1040             /* Update vectorial force */
1041             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1042             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1043             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1044             
1045             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1046             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1047             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1048
1049             }
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1056             {
1057
1058             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1059
1060             /* Compute parameters for interactions between i and j atoms */
1061             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1062
1063             /* EWALD ELECTROSTATICS */
1064
1065             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1066             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1067             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1068             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1069             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1070
1071             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1072                                          &ewtabF,&ewtabFn);
1073             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1074             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1075
1076             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1077
1078             fscal            = felec;
1079
1080             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1081
1082             /* Update vectorial force */
1083             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1084             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1085             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1086             
1087             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1088             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1089             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1090
1091             }
1092
1093             /**************************
1094              * CALCULATE INTERACTIONS *
1095              **************************/
1096
1097             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
1098             {
1099
1100             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1104
1105             /* EWALD ELECTROSTATICS */
1106
1107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1109             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1110             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1111             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1112
1113             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1114                                          &ewtabF,&ewtabFn);
1115             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1116             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1117
1118             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
1119
1120             fscal            = felec;
1121
1122             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1123
1124             /* Update vectorial force */
1125             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1126             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1127             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1128             
1129             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1130             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1131             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1132
1133             }
1134
1135             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1136
1137             /* Inner loop uses 180 flops */
1138         }
1139
1140         if(jidx<j_index_end)
1141         {
1142
1143             jnrA             = jjnr[jidx];
1144             j_coord_offsetA  = DIM*jnrA;
1145
1146             /* load j atom coordinates */
1147             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1148                                               &jx0,&jy0,&jz0);
1149
1150             /* Calculate displacement vector */
1151             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1152             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1153             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1154             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1155             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1156             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1157             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1158             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1159             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1160             dx30             = _fjsp_sub_v2r8(ix3,jx0);
1161             dy30             = _fjsp_sub_v2r8(iy3,jy0);
1162             dz30             = _fjsp_sub_v2r8(iz3,jz0);
1163
1164             /* Calculate squared distance and things based on it */
1165             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1166             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1167             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1168             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
1169
1170             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1171             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1172             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1173             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
1174
1175             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1176             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1177             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1178             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
1179
1180             /* Load parameters for j particles */
1181             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1182             vdwjidx0A        = 2*vdwtype[jnrA+0];
1183
1184             fjx0             = _fjsp_setzero_v2r8();
1185             fjy0             = _fjsp_setzero_v2r8();
1186             fjz0             = _fjsp_setzero_v2r8();
1187
1188             /**************************
1189              * CALCULATE INTERACTIONS *
1190              **************************/
1191
1192             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1193             {
1194
1195             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1196
1197             /* Compute parameters for interactions between i and j atoms */
1198             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1199
1200             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
1201
1202             /* Analytical LJ-PME */
1203             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1204             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
1205             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
1206             exponent         = gmx_simd_exp_d(-ewcljrsq);
1207             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1208             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
1209             /* f6A = 6 * C6grid * (1 - poly) */
1210             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
1211             /* f6B = C6grid * exponent * beta^6 */
1212             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
1213             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1214             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1215
1216             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1217
1218             fscal            = fvdw;
1219
1220             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1221
1222             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1223
1224             /* Update vectorial force */
1225             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1226             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1227             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1228             
1229             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1230             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1231             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1232
1233             }
1234
1235             /**************************
1236              * CALCULATE INTERACTIONS *
1237              **************************/
1238
1239             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1240             {
1241
1242             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1243
1244             /* Compute parameters for interactions between i and j atoms */
1245             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1246
1247             /* EWALD ELECTROSTATICS */
1248
1249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1250             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1251             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1252             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1253             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1254
1255             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1256             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1257             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1258
1259             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1260
1261             fscal            = felec;
1262
1263             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1264
1265             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1266
1267             /* Update vectorial force */
1268             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1269             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1270             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1271             
1272             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1273             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1274             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1275
1276             }
1277
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1283             {
1284
1285             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1286
1287             /* Compute parameters for interactions between i and j atoms */
1288             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1289
1290             /* EWALD ELECTROSTATICS */
1291
1292             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1293             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1294             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1295             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1296             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1297
1298             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1299             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1300             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1301
1302             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1303
1304             fscal            = felec;
1305
1306             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1307
1308             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1309
1310             /* Update vectorial force */
1311             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1312             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1313             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1314             
1315             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1316             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1317             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1318
1319             }
1320
1321             /**************************
1322              * CALCULATE INTERACTIONS *
1323              **************************/
1324
1325             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
1326             {
1327
1328             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1329
1330             /* Compute parameters for interactions between i and j atoms */
1331             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1332
1333             /* EWALD ELECTROSTATICS */
1334
1335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1336             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1337             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1338             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1339             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1340
1341             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1342             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1343             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1344
1345             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
1346
1347             fscal            = felec;
1348
1349             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1350
1351             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1352
1353             /* Update vectorial force */
1354             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1355             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1356             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1357             
1358             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1359             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1360             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1361
1362             }
1363
1364             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1365
1366             /* Inner loop uses 180 flops */
1367         }
1368
1369         /* End of innermost loop */
1370
1371         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1372                                               f+i_coord_offset,fshift+i_shift_offset);
1373
1374         /* Increment number of inner iterations */
1375         inneriter                  += j_index_end - j_index_start;
1376
1377         /* Outer loop uses 24 flops */
1378     }
1379
1380     /* Increment number of outer iterations */
1381     outeriter        += nri;
1382
1383     /* Update outer/inner flops */
1384
1385     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*180);
1386 }