33a8e260bf06b23b3b176e707ed72347ca9f39a5
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Water4-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwioffset3;
88     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx0A,vdwjidx0B;
90     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
95     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
102     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
103     _fjsp_v2r8           c6grid_00;
104     _fjsp_v2r8           c6grid_10;
105     _fjsp_v2r8           c6grid_20;
106     _fjsp_v2r8           c6grid_30;
107     real                 *vdwgridparam;
108     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
110     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
111     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     _fjsp_v2r8       itab_tmp;
114     _fjsp_v2r8       dummy_mask,cutoff_mask;
115     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
116     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
117     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
118
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
137     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
138     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
139
140     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
143     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
148     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
149     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
153     rcutoff_scalar   = fr->rcoulomb;
154     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
155     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
156
157     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
158     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164
165     outeriter        = 0;
166     inneriter        = 0;
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
185
186         fix0             = _fjsp_setzero_v2r8();
187         fiy0             = _fjsp_setzero_v2r8();
188         fiz0             = _fjsp_setzero_v2r8();
189         fix1             = _fjsp_setzero_v2r8();
190         fiy1             = _fjsp_setzero_v2r8();
191         fiz1             = _fjsp_setzero_v2r8();
192         fix2             = _fjsp_setzero_v2r8();
193         fiy2             = _fjsp_setzero_v2r8();
194         fiz2             = _fjsp_setzero_v2r8();
195         fix3             = _fjsp_setzero_v2r8();
196         fiy3             = _fjsp_setzero_v2r8();
197         fiz3             = _fjsp_setzero_v2r8();
198
199         /* Reset potential sums */
200         velecsum         = _fjsp_setzero_v2r8();
201         vvdwsum          = _fjsp_setzero_v2r8();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212
213             /* load j atom coordinates */
214             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _fjsp_sub_v2r8(ix0,jx0);
219             dy00             = _fjsp_sub_v2r8(iy0,jy0);
220             dz00             = _fjsp_sub_v2r8(iz0,jz0);
221             dx10             = _fjsp_sub_v2r8(ix1,jx0);
222             dy10             = _fjsp_sub_v2r8(iy1,jy0);
223             dz10             = _fjsp_sub_v2r8(iz1,jz0);
224             dx20             = _fjsp_sub_v2r8(ix2,jx0);
225             dy20             = _fjsp_sub_v2r8(iy2,jy0);
226             dz20             = _fjsp_sub_v2r8(iz2,jz0);
227             dx30             = _fjsp_sub_v2r8(ix3,jx0);
228             dy30             = _fjsp_sub_v2r8(iy3,jy0);
229             dz30             = _fjsp_sub_v2r8(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
233             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
234             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
235             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
236
237             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
238             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
239             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
240             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
241
242             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
243             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
244             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
245             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251
252             fjx0             = _fjsp_setzero_v2r8();
253             fjy0             = _fjsp_setzero_v2r8();
254             fjz0             = _fjsp_setzero_v2r8();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
261             {
262
263             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
267                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
268
269             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
270                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
271
272             /* Analytical LJ-PME */
273             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
274             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
275             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
276             exponent         = gmx_simd_exp_d(-ewcljrsq);
277             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
278             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
279             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
280             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
281             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
282             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
283                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
284             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
285             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
286
287             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
291             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
292
293             fscal            = fvdw;
294
295             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
296
297             /* Update vectorial force */
298             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
299             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
300             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
301             
302             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
303             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
304             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
305
306             }
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
313             {
314
315             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq10             = _fjsp_mul_v2r8(iq1,jq0);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
324             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
325             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
326             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
327
328             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
329             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
330             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
331             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
332             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
333             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
334             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
335             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
336             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
337             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
338
339             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
343             velecsum         = _fjsp_add_v2r8(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
348
349             /* Update vectorial force */
350             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
351             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
352             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
353             
354             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
355             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
356             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
357
358             }
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
365             {
366
367             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _fjsp_mul_v2r8(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
376             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
377             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
378             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
379
380             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
381             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
382             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
383             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
384             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
385             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
386             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
387             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
388             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
389             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
390
391             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
395             velecsum         = _fjsp_add_v2r8(velecsum,velec);
396
397             fscal            = felec;
398
399             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
400
401             /* Update vectorial force */
402             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
403             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
404             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
405             
406             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
407             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
408             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
409
410             }
411
412             /**************************
413              * CALCULATE INTERACTIONS *
414              **************************/
415
416             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
417             {
418
419             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
420
421             /* Compute parameters for interactions between i and j atoms */
422             qq30             = _fjsp_mul_v2r8(iq3,jq0);
423
424             /* EWALD ELECTROSTATICS */
425
426             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
427             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
428             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
429             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
430             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
431
432             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
433             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
434             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
435             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
436             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
437             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
438             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
439             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
440             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv30,sh_ewald),velec));
441             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
442
443             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
444
445             /* Update potential sum for this i atom from the interaction with this j atom. */
446             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
447             velecsum         = _fjsp_add_v2r8(velecsum,velec);
448
449             fscal            = felec;
450
451             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
452
453             /* Update vectorial force */
454             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
455             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
456             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
457             
458             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
459             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
460             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
461
462             }
463
464             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
465
466             /* Inner loop uses 209 flops */
467         }
468
469         if(jidx<j_index_end)
470         {
471
472             jnrA             = jjnr[jidx];
473             j_coord_offsetA  = DIM*jnrA;
474
475             /* load j atom coordinates */
476             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
477                                               &jx0,&jy0,&jz0);
478
479             /* Calculate displacement vector */
480             dx00             = _fjsp_sub_v2r8(ix0,jx0);
481             dy00             = _fjsp_sub_v2r8(iy0,jy0);
482             dz00             = _fjsp_sub_v2r8(iz0,jz0);
483             dx10             = _fjsp_sub_v2r8(ix1,jx0);
484             dy10             = _fjsp_sub_v2r8(iy1,jy0);
485             dz10             = _fjsp_sub_v2r8(iz1,jz0);
486             dx20             = _fjsp_sub_v2r8(ix2,jx0);
487             dy20             = _fjsp_sub_v2r8(iy2,jy0);
488             dz20             = _fjsp_sub_v2r8(iz2,jz0);
489             dx30             = _fjsp_sub_v2r8(ix3,jx0);
490             dy30             = _fjsp_sub_v2r8(iy3,jy0);
491             dz30             = _fjsp_sub_v2r8(iz3,jz0);
492
493             /* Calculate squared distance and things based on it */
494             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
495             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
496             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
497             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
498
499             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
500             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
501             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
502             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
503
504             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
505             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
506             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
507             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
508
509             /* Load parameters for j particles */
510             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
511             vdwjidx0A        = 2*vdwtype[jnrA+0];
512
513             fjx0             = _fjsp_setzero_v2r8();
514             fjy0             = _fjsp_setzero_v2r8();
515             fjz0             = _fjsp_setzero_v2r8();
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
522             {
523
524             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
525
526             /* Compute parameters for interactions between i and j atoms */
527             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
528
529             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
530
531             /* Analytical LJ-PME */
532             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
533             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
534             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
535             exponent         = gmx_simd_exp_d(-ewcljrsq);
536             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
537             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
538             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
539             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
540             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
541             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
542                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
543             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
544             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
545
546             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
550             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
551             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
552
553             fscal            = fvdw;
554
555             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
556
557             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
558
559             /* Update vectorial force */
560             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
561             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
562             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
563             
564             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
565             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
566             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
567
568             }
569
570             /**************************
571              * CALCULATE INTERACTIONS *
572              **************************/
573
574             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
575             {
576
577             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq10             = _fjsp_mul_v2r8(iq1,jq0);
581
582             /* EWALD ELECTROSTATICS */
583
584             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
585             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
586             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
587             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
588             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
589
590             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
591             ewtabD           = _fjsp_setzero_v2r8();
592             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
593             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
594             ewtabFn          = _fjsp_setzero_v2r8();
595             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
596             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
597             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
598             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
599             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
600
601             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
602
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
605             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
606             velecsum         = _fjsp_add_v2r8(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
611
612             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
613
614             /* Update vectorial force */
615             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
616             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
617             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
618             
619             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
620             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
621             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
622
623             }
624
625             /**************************
626              * CALCULATE INTERACTIONS *
627              **************************/
628
629             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
630             {
631
632             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq20             = _fjsp_mul_v2r8(iq2,jq0);
636
637             /* EWALD ELECTROSTATICS */
638
639             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
640             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
641             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
642             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
643             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
644
645             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
646             ewtabD           = _fjsp_setzero_v2r8();
647             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
648             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
649             ewtabFn          = _fjsp_setzero_v2r8();
650             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
651             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
652             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
653             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
654             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
655
656             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
657
658             /* Update potential sum for this i atom from the interaction with this j atom. */
659             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
660             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
661             velecsum         = _fjsp_add_v2r8(velecsum,velec);
662
663             fscal            = felec;
664
665             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
666
667             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
668
669             /* Update vectorial force */
670             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
671             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
672             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
673             
674             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
675             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
676             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
677
678             }
679
680             /**************************
681              * CALCULATE INTERACTIONS *
682              **************************/
683
684             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
685             {
686
687             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq30             = _fjsp_mul_v2r8(iq3,jq0);
691
692             /* EWALD ELECTROSTATICS */
693
694             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
695             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
696             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
697             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
698             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
699
700             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
701             ewtabD           = _fjsp_setzero_v2r8();
702             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
703             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
704             ewtabFn          = _fjsp_setzero_v2r8();
705             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
706             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
707             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
708             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv30,sh_ewald),velec));
709             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
710
711             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
712
713             /* Update potential sum for this i atom from the interaction with this j atom. */
714             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
715             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
716             velecsum         = _fjsp_add_v2r8(velecsum,velec);
717
718             fscal            = felec;
719
720             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
721
722             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
723
724             /* Update vectorial force */
725             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
726             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
727             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
728             
729             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
730             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
731             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
732
733             }
734
735             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
736
737             /* Inner loop uses 209 flops */
738         }
739
740         /* End of innermost loop */
741
742         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
743                                               f+i_coord_offset,fshift+i_shift_offset);
744
745         ggid                        = gid[iidx];
746         /* Update potential energies */
747         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
748         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
749
750         /* Increment number of inner iterations */
751         inneriter                  += j_index_end - j_index_start;
752
753         /* Outer loop uses 26 flops */
754     }
755
756     /* Increment number of outer iterations */
757     outeriter        += nri;
758
759     /* Update outer/inner flops */
760
761     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*209);
762 }
763 /*
764  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sparc64_hpc_ace_double
765  * Electrostatics interaction: Ewald
766  * VdW interaction:            LJEwald
767  * Geometry:                   Water4-Particle
768  * Calculate force/pot:        Force
769  */
770 void
771 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sparc64_hpc_ace_double
772                     (t_nblist                    * gmx_restrict       nlist,
773                      rvec                        * gmx_restrict          xx,
774                      rvec                        * gmx_restrict          ff,
775                      t_forcerec                  * gmx_restrict          fr,
776                      t_mdatoms                   * gmx_restrict     mdatoms,
777                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
778                      t_nrnb                      * gmx_restrict        nrnb)
779 {
780     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
781      * just 0 for non-waters.
782      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
783      * jnr indices corresponding to data put in the four positions in the SIMD register.
784      */
785     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
786     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
787     int              jnrA,jnrB;
788     int              j_coord_offsetA,j_coord_offsetB;
789     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
790     real             rcutoff_scalar;
791     real             *shiftvec,*fshift,*x,*f;
792     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
793     int              vdwioffset0;
794     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
795     int              vdwioffset1;
796     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
797     int              vdwioffset2;
798     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
799     int              vdwioffset3;
800     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
801     int              vdwjidx0A,vdwjidx0B;
802     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
803     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
804     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
805     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
806     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
807     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
808     real             *charge;
809     int              nvdwtype;
810     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
811     int              *vdwtype;
812     real             *vdwparam;
813     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
814     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
815     _fjsp_v2r8           c6grid_00;
816     _fjsp_v2r8           c6grid_10;
817     _fjsp_v2r8           c6grid_20;
818     _fjsp_v2r8           c6grid_30;
819     real                 *vdwgridparam;
820     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
821     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
822     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
823     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
824     real             *ewtab;
825     _fjsp_v2r8       itab_tmp;
826     _fjsp_v2r8       dummy_mask,cutoff_mask;
827     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
828     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
829     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
830
831     x                = xx[0];
832     f                = ff[0];
833
834     nri              = nlist->nri;
835     iinr             = nlist->iinr;
836     jindex           = nlist->jindex;
837     jjnr             = nlist->jjnr;
838     shiftidx         = nlist->shift;
839     gid              = nlist->gid;
840     shiftvec         = fr->shift_vec[0];
841     fshift           = fr->fshift[0];
842     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
843     charge           = mdatoms->chargeA;
844     nvdwtype         = fr->ntype;
845     vdwparam         = fr->nbfp;
846     vdwtype          = mdatoms->typeA;
847     vdwgridparam     = fr->ljpme_c6grid;
848     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
849     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
850     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
851
852     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
853     ewtab            = fr->ic->tabq_coul_F;
854     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
855     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
856
857     /* Setup water-specific parameters */
858     inr              = nlist->iinr[0];
859     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
860     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
861     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
862     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
863
864     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
865     rcutoff_scalar   = fr->rcoulomb;
866     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
867     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
868
869     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
870     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
871
872     /* Avoid stupid compiler warnings */
873     jnrA = jnrB = 0;
874     j_coord_offsetA = 0;
875     j_coord_offsetB = 0;
876
877     outeriter        = 0;
878     inneriter        = 0;
879
880     /* Start outer loop over neighborlists */
881     for(iidx=0; iidx<nri; iidx++)
882     {
883         /* Load shift vector for this list */
884         i_shift_offset   = DIM*shiftidx[iidx];
885
886         /* Load limits for loop over neighbors */
887         j_index_start    = jindex[iidx];
888         j_index_end      = jindex[iidx+1];
889
890         /* Get outer coordinate index */
891         inr              = iinr[iidx];
892         i_coord_offset   = DIM*inr;
893
894         /* Load i particle coords and add shift vector */
895         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
896                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
897
898         fix0             = _fjsp_setzero_v2r8();
899         fiy0             = _fjsp_setzero_v2r8();
900         fiz0             = _fjsp_setzero_v2r8();
901         fix1             = _fjsp_setzero_v2r8();
902         fiy1             = _fjsp_setzero_v2r8();
903         fiz1             = _fjsp_setzero_v2r8();
904         fix2             = _fjsp_setzero_v2r8();
905         fiy2             = _fjsp_setzero_v2r8();
906         fiz2             = _fjsp_setzero_v2r8();
907         fix3             = _fjsp_setzero_v2r8();
908         fiy3             = _fjsp_setzero_v2r8();
909         fiz3             = _fjsp_setzero_v2r8();
910
911         /* Start inner kernel loop */
912         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
913         {
914
915             /* Get j neighbor index, and coordinate index */
916             jnrA             = jjnr[jidx];
917             jnrB             = jjnr[jidx+1];
918             j_coord_offsetA  = DIM*jnrA;
919             j_coord_offsetB  = DIM*jnrB;
920
921             /* load j atom coordinates */
922             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
923                                               &jx0,&jy0,&jz0);
924
925             /* Calculate displacement vector */
926             dx00             = _fjsp_sub_v2r8(ix0,jx0);
927             dy00             = _fjsp_sub_v2r8(iy0,jy0);
928             dz00             = _fjsp_sub_v2r8(iz0,jz0);
929             dx10             = _fjsp_sub_v2r8(ix1,jx0);
930             dy10             = _fjsp_sub_v2r8(iy1,jy0);
931             dz10             = _fjsp_sub_v2r8(iz1,jz0);
932             dx20             = _fjsp_sub_v2r8(ix2,jx0);
933             dy20             = _fjsp_sub_v2r8(iy2,jy0);
934             dz20             = _fjsp_sub_v2r8(iz2,jz0);
935             dx30             = _fjsp_sub_v2r8(ix3,jx0);
936             dy30             = _fjsp_sub_v2r8(iy3,jy0);
937             dz30             = _fjsp_sub_v2r8(iz3,jz0);
938
939             /* Calculate squared distance and things based on it */
940             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
941             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
942             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
943             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
944
945             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
946             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
947             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
948             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
949
950             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
951             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
952             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
953             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
954
955             /* Load parameters for j particles */
956             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
957             vdwjidx0A        = 2*vdwtype[jnrA+0];
958             vdwjidx0B        = 2*vdwtype[jnrB+0];
959
960             fjx0             = _fjsp_setzero_v2r8();
961             fjy0             = _fjsp_setzero_v2r8();
962             fjz0             = _fjsp_setzero_v2r8();
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
969             {
970
971             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
972
973             /* Compute parameters for interactions between i and j atoms */
974             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
975                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
976
977             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
978                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
979
980             /* Analytical LJ-PME */
981             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
982             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
983             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
984             exponent         = gmx_simd_exp_d(-ewcljrsq);
985             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
986             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
987             /* f6A = 6 * C6grid * (1 - poly) */
988             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
989             /* f6B = C6grid * exponent * beta^6 */
990             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
991             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
992             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
993
994             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
995
996             fscal            = fvdw;
997
998             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
999
1000             /* Update vectorial force */
1001             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1002             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1003             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1004             
1005             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1006             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1007             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1008
1009             }
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1016             {
1017
1018             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1022
1023             /* EWALD ELECTROSTATICS */
1024
1025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1027             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1028             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1029             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1030
1031             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1032                                          &ewtabF,&ewtabFn);
1033             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1034             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1035
1036             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1037
1038             fscal            = felec;
1039
1040             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1041
1042             /* Update vectorial force */
1043             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1044             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1045             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1046             
1047             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1048             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1049             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1050
1051             }
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1058             {
1059
1060             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1061
1062             /* Compute parameters for interactions between i and j atoms */
1063             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1064
1065             /* EWALD ELECTROSTATICS */
1066
1067             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1068             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1069             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1070             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1071             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1072
1073             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1074                                          &ewtabF,&ewtabFn);
1075             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1076             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1077
1078             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1079
1080             fscal            = felec;
1081
1082             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1083
1084             /* Update vectorial force */
1085             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1086             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1087             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1088             
1089             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1090             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1091             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1092
1093             }
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
1100             {
1101
1102             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1106
1107             /* EWALD ELECTROSTATICS */
1108
1109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1111             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1112             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1113             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1114
1115             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1116                                          &ewtabF,&ewtabFn);
1117             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1118             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1119
1120             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
1121
1122             fscal            = felec;
1123
1124             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1125
1126             /* Update vectorial force */
1127             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1128             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1129             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1130             
1131             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1132             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1133             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1134
1135             }
1136
1137             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1138
1139             /* Inner loop uses 180 flops */
1140         }
1141
1142         if(jidx<j_index_end)
1143         {
1144
1145             jnrA             = jjnr[jidx];
1146             j_coord_offsetA  = DIM*jnrA;
1147
1148             /* load j atom coordinates */
1149             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1150                                               &jx0,&jy0,&jz0);
1151
1152             /* Calculate displacement vector */
1153             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1154             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1155             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1156             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1157             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1158             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1159             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1160             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1161             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1162             dx30             = _fjsp_sub_v2r8(ix3,jx0);
1163             dy30             = _fjsp_sub_v2r8(iy3,jy0);
1164             dz30             = _fjsp_sub_v2r8(iz3,jz0);
1165
1166             /* Calculate squared distance and things based on it */
1167             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1168             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1169             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1170             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
1171
1172             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1173             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1174             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1175             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
1176
1177             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1178             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1179             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1180             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
1181
1182             /* Load parameters for j particles */
1183             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1184             vdwjidx0A        = 2*vdwtype[jnrA+0];
1185
1186             fjx0             = _fjsp_setzero_v2r8();
1187             fjy0             = _fjsp_setzero_v2r8();
1188             fjz0             = _fjsp_setzero_v2r8();
1189
1190             /**************************
1191              * CALCULATE INTERACTIONS *
1192              **************************/
1193
1194             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1195             {
1196
1197             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1198
1199             /* Compute parameters for interactions between i and j atoms */
1200             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1201
1202             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
1203
1204             /* Analytical LJ-PME */
1205             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1206             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
1207             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
1208             exponent         = gmx_simd_exp_d(-ewcljrsq);
1209             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1210             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
1211             /* f6A = 6 * C6grid * (1 - poly) */
1212             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
1213             /* f6B = C6grid * exponent * beta^6 */
1214             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
1215             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1216             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1217
1218             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1219
1220             fscal            = fvdw;
1221
1222             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1223
1224             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1225
1226             /* Update vectorial force */
1227             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1228             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1229             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1230             
1231             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1232             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1233             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1234
1235             }
1236
1237             /**************************
1238              * CALCULATE INTERACTIONS *
1239              **************************/
1240
1241             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1242             {
1243
1244             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1245
1246             /* Compute parameters for interactions between i and j atoms */
1247             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1248
1249             /* EWALD ELECTROSTATICS */
1250
1251             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1252             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1253             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1254             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1255             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1256
1257             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1258             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1259             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1260
1261             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1262
1263             fscal            = felec;
1264
1265             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1266
1267             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1268
1269             /* Update vectorial force */
1270             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1271             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1272             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1273             
1274             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1275             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1276             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1277
1278             }
1279
1280             /**************************
1281              * CALCULATE INTERACTIONS *
1282              **************************/
1283
1284             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1285             {
1286
1287             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1288
1289             /* Compute parameters for interactions between i and j atoms */
1290             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1291
1292             /* EWALD ELECTROSTATICS */
1293
1294             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1295             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1296             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1297             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1298             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1299
1300             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1301             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1302             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1303
1304             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1305
1306             fscal            = felec;
1307
1308             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1309
1310             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1311
1312             /* Update vectorial force */
1313             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1314             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1315             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1316             
1317             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1318             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1319             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1320
1321             }
1322
1323             /**************************
1324              * CALCULATE INTERACTIONS *
1325              **************************/
1326
1327             if (gmx_fjsp_any_lt_v2r8(rsq30,rcutoff2))
1328             {
1329
1330             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1331
1332             /* Compute parameters for interactions between i and j atoms */
1333             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1334
1335             /* EWALD ELECTROSTATICS */
1336
1337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1338             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1339             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1340             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1341             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1342
1343             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1344             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1345             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1346
1347             cutoff_mask      = _fjsp_cmplt_v2r8(rsq30,rcutoff2);
1348
1349             fscal            = felec;
1350
1351             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1352
1353             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1354
1355             /* Update vectorial force */
1356             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1357             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1358             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1359             
1360             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1361             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1362             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1363
1364             }
1365
1366             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1367
1368             /* Inner loop uses 180 flops */
1369         }
1370
1371         /* End of innermost loop */
1372
1373         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1374                                               f+i_coord_offset,fshift+i_shift_offset);
1375
1376         /* Increment number of inner iterations */
1377         inneriter                  += j_index_end - j_index_start;
1378
1379         /* Outer loop uses 24 flops */
1380     }
1381
1382     /* Increment number of outer iterations */
1383     outeriter        += nri;
1384
1385     /* Update outer/inner flops */
1386
1387     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*180);
1388 }