ce0ae53e1c241d20dcb4f028ea4633aa6545bdee
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8           c6grid_00;
99     _fjsp_v2r8           c6grid_10;
100     _fjsp_v2r8           c6grid_20;
101     real                 *vdwgridparam;
102     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
104     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
105     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     _fjsp_v2r8       itab_tmp;
108     _fjsp_v2r8       dummy_mask,cutoff_mask;
109     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
110     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
111     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
112
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
131     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
132     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
133
134     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
137     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
142     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
143     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
147     rcutoff_scalar   = fr->rcoulomb;
148     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
149     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
150
151     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
152     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _fjsp_setzero_v2r8();
181         fiy0             = _fjsp_setzero_v2r8();
182         fiz0             = _fjsp_setzero_v2r8();
183         fix1             = _fjsp_setzero_v2r8();
184         fiy1             = _fjsp_setzero_v2r8();
185         fiz1             = _fjsp_setzero_v2r8();
186         fix2             = _fjsp_setzero_v2r8();
187         fiy2             = _fjsp_setzero_v2r8();
188         fiz2             = _fjsp_setzero_v2r8();
189
190         /* Reset potential sums */
191         velecsum         = _fjsp_setzero_v2r8();
192         vvdwsum          = _fjsp_setzero_v2r8();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203
204             /* load j atom coordinates */
205             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _fjsp_sub_v2r8(ix0,jx0);
210             dy00             = _fjsp_sub_v2r8(iy0,jy0);
211             dz00             = _fjsp_sub_v2r8(iz0,jz0);
212             dx10             = _fjsp_sub_v2r8(ix1,jx0);
213             dy10             = _fjsp_sub_v2r8(iy1,jy0);
214             dz10             = _fjsp_sub_v2r8(iz1,jz0);
215             dx20             = _fjsp_sub_v2r8(ix2,jx0);
216             dy20             = _fjsp_sub_v2r8(iy2,jy0);
217             dz20             = _fjsp_sub_v2r8(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
221             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
222             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
223
224             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
225             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
226             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
227
228             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
229             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
230             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236
237             fjx0             = _fjsp_setzero_v2r8();
238             fjy0             = _fjsp_setzero_v2r8();
239             fjz0             = _fjsp_setzero_v2r8();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
246             {
247
248             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _fjsp_mul_v2r8(iq0,jq0);
252             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
254
255             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
256                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
257
258             /* EWALD ELECTROSTATICS */
259
260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
261             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
262             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
263             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
264             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
265
266             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
267             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
268             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
269             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
270             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
271             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
272             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
273             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
274             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
275             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
276
277             /* Analytical LJ-PME */
278             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
279             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
280             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
281             exponent         = gmx_simd_exp_d(-ewcljrsq);
282             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
283             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
284             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
285             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
286             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
287             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
288                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
289             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
290             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
291
292             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
296             velecsum         = _fjsp_add_v2r8(velecsum,velec);
297             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
298             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
299
300             fscal            = _fjsp_add_v2r8(felec,fvdw);
301
302             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
303
304             /* Update vectorial force */
305             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
306             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
307             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
308             
309             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
310             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
311             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
312
313             }
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
320             {
321
322             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq10             = _fjsp_mul_v2r8(iq1,jq0);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
331             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
332             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
333             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
334
335             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
336             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
337             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
338             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
339             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
340             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
341             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
342             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
343             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
344             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
345
346             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
350             velecsum         = _fjsp_add_v2r8(velecsum,velec);
351
352             fscal            = felec;
353
354             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
355
356             /* Update vectorial force */
357             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
358             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
359             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
360             
361             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
362             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
363             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
364
365             }
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
372             {
373
374             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq20             = _fjsp_mul_v2r8(iq2,jq0);
378
379             /* EWALD ELECTROSTATICS */
380
381             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
382             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
383             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
384             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
385             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
386
387             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
388             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
389             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
390             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
391             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
392             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
393             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
394             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
395             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
396             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
397
398             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
399
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
402             velecsum         = _fjsp_add_v2r8(velecsum,velec);
403
404             fscal            = felec;
405
406             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
407
408             /* Update vectorial force */
409             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
410             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
411             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
412             
413             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
414             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
415             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
416
417             }
418
419             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
420
421             /* Inner loop uses 180 flops */
422         }
423
424         if(jidx<j_index_end)
425         {
426
427             jnrA             = jjnr[jidx];
428             j_coord_offsetA  = DIM*jnrA;
429
430             /* load j atom coordinates */
431             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
432                                               &jx0,&jy0,&jz0);
433
434             /* Calculate displacement vector */
435             dx00             = _fjsp_sub_v2r8(ix0,jx0);
436             dy00             = _fjsp_sub_v2r8(iy0,jy0);
437             dz00             = _fjsp_sub_v2r8(iz0,jz0);
438             dx10             = _fjsp_sub_v2r8(ix1,jx0);
439             dy10             = _fjsp_sub_v2r8(iy1,jy0);
440             dz10             = _fjsp_sub_v2r8(iz1,jz0);
441             dx20             = _fjsp_sub_v2r8(ix2,jx0);
442             dy20             = _fjsp_sub_v2r8(iy2,jy0);
443             dz20             = _fjsp_sub_v2r8(iz2,jz0);
444
445             /* Calculate squared distance and things based on it */
446             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
447             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
448             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
449
450             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
451             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
452             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
453
454             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
455             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
456             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
457
458             /* Load parameters for j particles */
459             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
460             vdwjidx0A        = 2*vdwtype[jnrA+0];
461
462             fjx0             = _fjsp_setzero_v2r8();
463             fjy0             = _fjsp_setzero_v2r8();
464             fjz0             = _fjsp_setzero_v2r8();
465
466             /**************************
467              * CALCULATE INTERACTIONS *
468              **************************/
469
470             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
471             {
472
473             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
474
475             /* Compute parameters for interactions between i and j atoms */
476             qq00             = _fjsp_mul_v2r8(iq0,jq0);
477             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
478
479             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
480
481             /* EWALD ELECTROSTATICS */
482
483             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
484             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
485             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
486             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
487             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
488
489             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
490             ewtabD           = _fjsp_setzero_v2r8();
491             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
492             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
493             ewtabFn          = _fjsp_setzero_v2r8();
494             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
495             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
496             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
497             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
498             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
499
500             /* Analytical LJ-PME */
501             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
502             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
503             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
504             exponent         = gmx_simd_exp_d(-ewcljrsq);
505             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
506             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
507             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
508             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
509             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
510             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
511                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
512             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
513             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
514
515             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
516
517             /* Update potential sum for this i atom from the interaction with this j atom. */
518             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
519             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
520             velecsum         = _fjsp_add_v2r8(velecsum,velec);
521             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
522             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
523             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
524
525             fscal            = _fjsp_add_v2r8(felec,fvdw);
526
527             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
528
529             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
530
531             /* Update vectorial force */
532             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
533             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
534             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
535             
536             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
537             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
538             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
539
540             }
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
547             {
548
549             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq10             = _fjsp_mul_v2r8(iq1,jq0);
553
554             /* EWALD ELECTROSTATICS */
555
556             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
557             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
558             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
559             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
560             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
561
562             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
563             ewtabD           = _fjsp_setzero_v2r8();
564             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
565             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
566             ewtabFn          = _fjsp_setzero_v2r8();
567             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
568             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
569             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
570             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
571             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
572
573             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
574
575             /* Update potential sum for this i atom from the interaction with this j atom. */
576             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
577             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
578             velecsum         = _fjsp_add_v2r8(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
583
584             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
585
586             /* Update vectorial force */
587             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
588             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
589             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
590             
591             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
592             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
593             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
594
595             }
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
602             {
603
604             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq20             = _fjsp_mul_v2r8(iq2,jq0);
608
609             /* EWALD ELECTROSTATICS */
610
611             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
612             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
613             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
614             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
615             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
616
617             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
618             ewtabD           = _fjsp_setzero_v2r8();
619             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
620             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
621             ewtabFn          = _fjsp_setzero_v2r8();
622             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
623             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
624             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
625             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
626             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
627
628             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
629
630             /* Update potential sum for this i atom from the interaction with this j atom. */
631             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
632             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
633             velecsum         = _fjsp_add_v2r8(velecsum,velec);
634
635             fscal            = felec;
636
637             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
638
639             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
640
641             /* Update vectorial force */
642             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
643             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
644             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
645             
646             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
647             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
648             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
649
650             }
651
652             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
653
654             /* Inner loop uses 180 flops */
655         }
656
657         /* End of innermost loop */
658
659         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
660                                               f+i_coord_offset,fshift+i_shift_offset);
661
662         ggid                        = gid[iidx];
663         /* Update potential energies */
664         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
665         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
666
667         /* Increment number of inner iterations */
668         inneriter                  += j_index_end - j_index_start;
669
670         /* Outer loop uses 20 flops */
671     }
672
673     /* Increment number of outer iterations */
674     outeriter        += nri;
675
676     /* Update outer/inner flops */
677
678     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*180);
679 }
680 /*
681  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sparc64_hpc_ace_double
682  * Electrostatics interaction: Ewald
683  * VdW interaction:            LJEwald
684  * Geometry:                   Water3-Particle
685  * Calculate force/pot:        Force
686  */
687 void
688 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sparc64_hpc_ace_double
689                     (t_nblist                    * gmx_restrict       nlist,
690                      rvec                        * gmx_restrict          xx,
691                      rvec                        * gmx_restrict          ff,
692                      t_forcerec                  * gmx_restrict          fr,
693                      t_mdatoms                   * gmx_restrict     mdatoms,
694                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
695                      t_nrnb                      * gmx_restrict        nrnb)
696 {
697     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
698      * just 0 for non-waters.
699      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
700      * jnr indices corresponding to data put in the four positions in the SIMD register.
701      */
702     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
703     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
704     int              jnrA,jnrB;
705     int              j_coord_offsetA,j_coord_offsetB;
706     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
707     real             rcutoff_scalar;
708     real             *shiftvec,*fshift,*x,*f;
709     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
710     int              vdwioffset0;
711     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
712     int              vdwioffset1;
713     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
714     int              vdwioffset2;
715     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
716     int              vdwjidx0A,vdwjidx0B;
717     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
718     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
719     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
720     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
721     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
722     real             *charge;
723     int              nvdwtype;
724     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
725     int              *vdwtype;
726     real             *vdwparam;
727     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
728     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
729     _fjsp_v2r8           c6grid_00;
730     _fjsp_v2r8           c6grid_10;
731     _fjsp_v2r8           c6grid_20;
732     real                 *vdwgridparam;
733     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
734     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
735     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
736     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
737     real             *ewtab;
738     _fjsp_v2r8       itab_tmp;
739     _fjsp_v2r8       dummy_mask,cutoff_mask;
740     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
741     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
742     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
743
744     x                = xx[0];
745     f                = ff[0];
746
747     nri              = nlist->nri;
748     iinr             = nlist->iinr;
749     jindex           = nlist->jindex;
750     jjnr             = nlist->jjnr;
751     shiftidx         = nlist->shift;
752     gid              = nlist->gid;
753     shiftvec         = fr->shift_vec[0];
754     fshift           = fr->fshift[0];
755     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
756     charge           = mdatoms->chargeA;
757     nvdwtype         = fr->ntype;
758     vdwparam         = fr->nbfp;
759     vdwtype          = mdatoms->typeA;
760     vdwgridparam     = fr->ljpme_c6grid;
761     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
762     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
763     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
764
765     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
766     ewtab            = fr->ic->tabq_coul_F;
767     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
768     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
769
770     /* Setup water-specific parameters */
771     inr              = nlist->iinr[0];
772     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
773     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
774     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
775     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
776
777     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
778     rcutoff_scalar   = fr->rcoulomb;
779     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
780     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
781
782     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
783     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
784
785     /* Avoid stupid compiler warnings */
786     jnrA = jnrB = 0;
787     j_coord_offsetA = 0;
788     j_coord_offsetB = 0;
789
790     outeriter        = 0;
791     inneriter        = 0;
792
793     /* Start outer loop over neighborlists */
794     for(iidx=0; iidx<nri; iidx++)
795     {
796         /* Load shift vector for this list */
797         i_shift_offset   = DIM*shiftidx[iidx];
798
799         /* Load limits for loop over neighbors */
800         j_index_start    = jindex[iidx];
801         j_index_end      = jindex[iidx+1];
802
803         /* Get outer coordinate index */
804         inr              = iinr[iidx];
805         i_coord_offset   = DIM*inr;
806
807         /* Load i particle coords and add shift vector */
808         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
809                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
810
811         fix0             = _fjsp_setzero_v2r8();
812         fiy0             = _fjsp_setzero_v2r8();
813         fiz0             = _fjsp_setzero_v2r8();
814         fix1             = _fjsp_setzero_v2r8();
815         fiy1             = _fjsp_setzero_v2r8();
816         fiz1             = _fjsp_setzero_v2r8();
817         fix2             = _fjsp_setzero_v2r8();
818         fiy2             = _fjsp_setzero_v2r8();
819         fiz2             = _fjsp_setzero_v2r8();
820
821         /* Start inner kernel loop */
822         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
823         {
824
825             /* Get j neighbor index, and coordinate index */
826             jnrA             = jjnr[jidx];
827             jnrB             = jjnr[jidx+1];
828             j_coord_offsetA  = DIM*jnrA;
829             j_coord_offsetB  = DIM*jnrB;
830
831             /* load j atom coordinates */
832             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
833                                               &jx0,&jy0,&jz0);
834
835             /* Calculate displacement vector */
836             dx00             = _fjsp_sub_v2r8(ix0,jx0);
837             dy00             = _fjsp_sub_v2r8(iy0,jy0);
838             dz00             = _fjsp_sub_v2r8(iz0,jz0);
839             dx10             = _fjsp_sub_v2r8(ix1,jx0);
840             dy10             = _fjsp_sub_v2r8(iy1,jy0);
841             dz10             = _fjsp_sub_v2r8(iz1,jz0);
842             dx20             = _fjsp_sub_v2r8(ix2,jx0);
843             dy20             = _fjsp_sub_v2r8(iy2,jy0);
844             dz20             = _fjsp_sub_v2r8(iz2,jz0);
845
846             /* Calculate squared distance and things based on it */
847             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
848             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
849             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
850
851             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
852             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
853             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
854
855             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
856             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
857             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
858
859             /* Load parameters for j particles */
860             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
861             vdwjidx0A        = 2*vdwtype[jnrA+0];
862             vdwjidx0B        = 2*vdwtype[jnrB+0];
863
864             fjx0             = _fjsp_setzero_v2r8();
865             fjy0             = _fjsp_setzero_v2r8();
866             fjz0             = _fjsp_setzero_v2r8();
867
868             /**************************
869              * CALCULATE INTERACTIONS *
870              **************************/
871
872             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
873             {
874
875             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
876
877             /* Compute parameters for interactions between i and j atoms */
878             qq00             = _fjsp_mul_v2r8(iq0,jq0);
879             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
880                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
881
882             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
883                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
884
885             /* EWALD ELECTROSTATICS */
886
887             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
888             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
889             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
890             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
891             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
892
893             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
894                                          &ewtabF,&ewtabFn);
895             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
896             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
897
898             /* Analytical LJ-PME */
899             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
900             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
901             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
902             exponent         = gmx_simd_exp_d(-ewcljrsq);
903             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
904             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
905             /* f6A = 6 * C6grid * (1 - poly) */
906             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
907             /* f6B = C6grid * exponent * beta^6 */
908             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
909             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
910             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
911
912             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
913
914             fscal            = _fjsp_add_v2r8(felec,fvdw);
915
916             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
917
918             /* Update vectorial force */
919             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
920             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
921             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
922             
923             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
924             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
925             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
926
927             }
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
934             {
935
936             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
937
938             /* Compute parameters for interactions between i and j atoms */
939             qq10             = _fjsp_mul_v2r8(iq1,jq0);
940
941             /* EWALD ELECTROSTATICS */
942
943             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
944             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
945             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
946             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
947             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
948
949             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
950                                          &ewtabF,&ewtabFn);
951             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
952             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
953
954             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
955
956             fscal            = felec;
957
958             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
959
960             /* Update vectorial force */
961             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
962             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
963             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
964             
965             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
966             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
967             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
968
969             }
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
976             {
977
978             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
979
980             /* Compute parameters for interactions between i and j atoms */
981             qq20             = _fjsp_mul_v2r8(iq2,jq0);
982
983             /* EWALD ELECTROSTATICS */
984
985             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
986             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
987             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
988             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
989             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
990
991             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
992                                          &ewtabF,&ewtabFn);
993             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
994             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
995
996             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
997
998             fscal            = felec;
999
1000             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1001
1002             /* Update vectorial force */
1003             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1004             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1005             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1006             
1007             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1008             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1009             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1010
1011             }
1012
1013             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1014
1015             /* Inner loop uses 151 flops */
1016         }
1017
1018         if(jidx<j_index_end)
1019         {
1020
1021             jnrA             = jjnr[jidx];
1022             j_coord_offsetA  = DIM*jnrA;
1023
1024             /* load j atom coordinates */
1025             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1026                                               &jx0,&jy0,&jz0);
1027
1028             /* Calculate displacement vector */
1029             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1030             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1031             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1032             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1033             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1034             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1035             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1036             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1037             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1038
1039             /* Calculate squared distance and things based on it */
1040             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1041             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1042             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1043
1044             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1045             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1046             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1047
1048             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1049             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1050             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1051
1052             /* Load parameters for j particles */
1053             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1054             vdwjidx0A        = 2*vdwtype[jnrA+0];
1055
1056             fjx0             = _fjsp_setzero_v2r8();
1057             fjy0             = _fjsp_setzero_v2r8();
1058             fjz0             = _fjsp_setzero_v2r8();
1059
1060             /**************************
1061              * CALCULATE INTERACTIONS *
1062              **************************/
1063
1064             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1065             {
1066
1067             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1071             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1072
1073             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
1074
1075             /* EWALD ELECTROSTATICS */
1076
1077             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1078             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1079             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1080             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1081             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1082
1083             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1084             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1085             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1086
1087             /* Analytical LJ-PME */
1088             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1089             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
1090             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
1091             exponent         = gmx_simd_exp_d(-ewcljrsq);
1092             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1093             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
1094             /* f6A = 6 * C6grid * (1 - poly) */
1095             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
1096             /* f6B = C6grid * exponent * beta^6 */
1097             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
1098             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1099             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1100
1101             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1102
1103             fscal            = _fjsp_add_v2r8(felec,fvdw);
1104
1105             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1106
1107             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1108
1109             /* Update vectorial force */
1110             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1111             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1112             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1113             
1114             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1115             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1116             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1117
1118             }
1119
1120             /**************************
1121              * CALCULATE INTERACTIONS *
1122              **************************/
1123
1124             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1125             {
1126
1127             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1128
1129             /* Compute parameters for interactions between i and j atoms */
1130             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1131
1132             /* EWALD ELECTROSTATICS */
1133
1134             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1135             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1136             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1137             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1138             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1139
1140             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1141             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1142             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1143
1144             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1145
1146             fscal            = felec;
1147
1148             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1149
1150             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1151
1152             /* Update vectorial force */
1153             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1154             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1155             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1156             
1157             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1158             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1159             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1160
1161             }
1162
1163             /**************************
1164              * CALCULATE INTERACTIONS *
1165              **************************/
1166
1167             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1168             {
1169
1170             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1171
1172             /* Compute parameters for interactions between i and j atoms */
1173             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1174
1175             /* EWALD ELECTROSTATICS */
1176
1177             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1178             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1179             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1180             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1181             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1182
1183             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1184             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1185             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1186
1187             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1188
1189             fscal            = felec;
1190
1191             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1192
1193             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1194
1195             /* Update vectorial force */
1196             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1197             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1198             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1199             
1200             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1201             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1202             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1203
1204             }
1205
1206             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1207
1208             /* Inner loop uses 151 flops */
1209         }
1210
1211         /* End of innermost loop */
1212
1213         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1214                                               f+i_coord_offset,fshift+i_shift_offset);
1215
1216         /* Increment number of inner iterations */
1217         inneriter                  += j_index_end - j_index_start;
1218
1219         /* Outer loop uses 18 flops */
1220     }
1221
1222     /* Increment number of outer iterations */
1223     outeriter        += nri;
1224
1225     /* Update outer/inner flops */
1226
1227     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1228 }