K-computer specific modifications
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/legacyheaders/vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8           c6grid_00;
101     _fjsp_v2r8           c6grid_10;
102     _fjsp_v2r8           c6grid_20;
103     real                 *vdwgridparam;
104     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
106     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
107     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     _fjsp_v2r8       itab_tmp;
110     _fjsp_v2r8       dummy_mask,cutoff_mask;
111     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
112     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
113     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
114
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
133     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
134     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
135
136     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
139     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
144     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
145     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
149     rcutoff_scalar   = fr->rcoulomb;
150     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
151     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
152
153     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
154     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _fjsp_setzero_v2r8();
183         fiy0             = _fjsp_setzero_v2r8();
184         fiz0             = _fjsp_setzero_v2r8();
185         fix1             = _fjsp_setzero_v2r8();
186         fiy1             = _fjsp_setzero_v2r8();
187         fiz1             = _fjsp_setzero_v2r8();
188         fix2             = _fjsp_setzero_v2r8();
189         fiy2             = _fjsp_setzero_v2r8();
190         fiz2             = _fjsp_setzero_v2r8();
191
192         /* Reset potential sums */
193         velecsum         = _fjsp_setzero_v2r8();
194         vvdwsum          = _fjsp_setzero_v2r8();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205
206             /* load j atom coordinates */
207             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _fjsp_sub_v2r8(ix0,jx0);
212             dy00             = _fjsp_sub_v2r8(iy0,jy0);
213             dz00             = _fjsp_sub_v2r8(iz0,jz0);
214             dx10             = _fjsp_sub_v2r8(ix1,jx0);
215             dy10             = _fjsp_sub_v2r8(iy1,jy0);
216             dz10             = _fjsp_sub_v2r8(iz1,jz0);
217             dx20             = _fjsp_sub_v2r8(ix2,jx0);
218             dy20             = _fjsp_sub_v2r8(iy2,jy0);
219             dz20             = _fjsp_sub_v2r8(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
223             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
224             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
225
226             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
227             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
228             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
229
230             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
231             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
232             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _fjsp_setzero_v2r8();
240             fjy0             = _fjsp_setzero_v2r8();
241             fjz0             = _fjsp_setzero_v2r8();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
248             {
249
250             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _fjsp_mul_v2r8(iq0,jq0);
254             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
256
257             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
258                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
259
260             /* EWALD ELECTROSTATICS */
261
262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
263             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
264             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
265             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
266             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
267
268             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
269             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
270             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
271             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
272             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
273             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
274             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
275             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
276             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
277             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
278
279             /* Analytical LJ-PME */
280             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
281             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
282             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
283             exponent         = gmx_simd_exp_d(ewcljrsq);
284             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
285             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
286             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
287             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
288             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
289             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
290                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
291             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
292             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
293
294             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
298             velecsum         = _fjsp_add_v2r8(velecsum,velec);
299             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
300             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
301
302             fscal            = _fjsp_add_v2r8(felec,fvdw);
303
304             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
305
306             /* Update vectorial force */
307             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
308             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
309             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
310             
311             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
312             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
313             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
314
315             }
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
322             {
323
324             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _fjsp_mul_v2r8(iq1,jq0);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
333             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
334             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
335             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
336
337             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
338             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
339             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
340             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
341             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
342             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
343             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
344             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
345             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
346             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
347
348             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
352             velecsum         = _fjsp_add_v2r8(velecsum,velec);
353
354             fscal            = felec;
355
356             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
357
358             /* Update vectorial force */
359             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
360             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
361             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
362             
363             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
364             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
365             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
366
367             }
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
374             {
375
376             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq20             = _fjsp_mul_v2r8(iq2,jq0);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
384             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
385             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
386             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
387             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
388
389             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
390             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
391             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
392             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
393             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
394             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
395             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
396             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
397             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
398             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
399
400             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
401
402             /* Update potential sum for this i atom from the interaction with this j atom. */
403             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
404             velecsum         = _fjsp_add_v2r8(velecsum,velec);
405
406             fscal            = felec;
407
408             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
409
410             /* Update vectorial force */
411             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
412             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
413             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
414             
415             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
416             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
417             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
418
419             }
420
421             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
422
423             /* Inner loop uses 180 flops */
424         }
425
426         if(jidx<j_index_end)
427         {
428
429             jnrA             = jjnr[jidx];
430             j_coord_offsetA  = DIM*jnrA;
431
432             /* load j atom coordinates */
433             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
434                                               &jx0,&jy0,&jz0);
435
436             /* Calculate displacement vector */
437             dx00             = _fjsp_sub_v2r8(ix0,jx0);
438             dy00             = _fjsp_sub_v2r8(iy0,jy0);
439             dz00             = _fjsp_sub_v2r8(iz0,jz0);
440             dx10             = _fjsp_sub_v2r8(ix1,jx0);
441             dy10             = _fjsp_sub_v2r8(iy1,jy0);
442             dz10             = _fjsp_sub_v2r8(iz1,jz0);
443             dx20             = _fjsp_sub_v2r8(ix2,jx0);
444             dy20             = _fjsp_sub_v2r8(iy2,jy0);
445             dz20             = _fjsp_sub_v2r8(iz2,jz0);
446
447             /* Calculate squared distance and things based on it */
448             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
449             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
450             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
451
452             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
453             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
454             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
455
456             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
457             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
458             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
459
460             /* Load parameters for j particles */
461             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463
464             fjx0             = _fjsp_setzero_v2r8();
465             fjy0             = _fjsp_setzero_v2r8();
466             fjz0             = _fjsp_setzero_v2r8();
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
473             {
474
475             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
476
477             /* Compute parameters for interactions between i and j atoms */
478             qq00             = _fjsp_mul_v2r8(iq0,jq0);
479             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
480                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
481
482             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
483                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
484
485             /* EWALD ELECTROSTATICS */
486
487             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
488             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
489             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
490             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
491             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
492
493             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
494             ewtabD           = _fjsp_setzero_v2r8();
495             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
496             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
497             ewtabFn          = _fjsp_setzero_v2r8();
498             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
499             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
500             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
501             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
502             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
503
504             /* Analytical LJ-PME */
505             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
506             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
507             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
508             exponent         = gmx_simd_exp_d(ewcljrsq);
509             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
510             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
511             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
512             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
513             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
514             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
515                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
516             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
517             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
518
519             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
520
521             /* Update potential sum for this i atom from the interaction with this j atom. */
522             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
523             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
524             velecsum         = _fjsp_add_v2r8(velecsum,velec);
525             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
526             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
527             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
528
529             fscal            = _fjsp_add_v2r8(felec,fvdw);
530
531             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
532
533             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
534
535             /* Update vectorial force */
536             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
537             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
538             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
539             
540             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
541             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
542             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
543
544             }
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
551             {
552
553             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq10             = _fjsp_mul_v2r8(iq1,jq0);
557
558             /* EWALD ELECTROSTATICS */
559
560             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
561             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
562             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
563             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
564             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
565
566             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
567             ewtabD           = _fjsp_setzero_v2r8();
568             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
569             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
570             ewtabFn          = _fjsp_setzero_v2r8();
571             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
572             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
573             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
574             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
575             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
576
577             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
581             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
582             velecsum         = _fjsp_add_v2r8(velecsum,velec);
583
584             fscal            = felec;
585
586             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
587
588             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
589
590             /* Update vectorial force */
591             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
592             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
593             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
594             
595             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
596             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
597             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
598
599             }
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
606             {
607
608             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq20             = _fjsp_mul_v2r8(iq2,jq0);
612
613             /* EWALD ELECTROSTATICS */
614
615             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
616             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
617             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
618             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
619             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
620
621             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
622             ewtabD           = _fjsp_setzero_v2r8();
623             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
624             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
625             ewtabFn          = _fjsp_setzero_v2r8();
626             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
627             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
628             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
629             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
630             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
631
632             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
633
634             /* Update potential sum for this i atom from the interaction with this j atom. */
635             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
636             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
637             velecsum         = _fjsp_add_v2r8(velecsum,velec);
638
639             fscal            = felec;
640
641             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
642
643             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
644
645             /* Update vectorial force */
646             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
647             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
648             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
649             
650             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
651             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
652             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
653
654             }
655
656             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
657
658             /* Inner loop uses 180 flops */
659         }
660
661         /* End of innermost loop */
662
663         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
664                                               f+i_coord_offset,fshift+i_shift_offset);
665
666         ggid                        = gid[iidx];
667         /* Update potential energies */
668         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
669         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
670
671         /* Increment number of inner iterations */
672         inneriter                  += j_index_end - j_index_start;
673
674         /* Outer loop uses 20 flops */
675     }
676
677     /* Increment number of outer iterations */
678     outeriter        += nri;
679
680     /* Update outer/inner flops */
681
682     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*180);
683 }
684 /*
685  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sparc64_hpc_ace_double
686  * Electrostatics interaction: Ewald
687  * VdW interaction:            LJEwald
688  * Geometry:                   Water3-Particle
689  * Calculate force/pot:        Force
690  */
691 void
692 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sparc64_hpc_ace_double
693                     (t_nblist                    * gmx_restrict       nlist,
694                      rvec                        * gmx_restrict          xx,
695                      rvec                        * gmx_restrict          ff,
696                      t_forcerec                  * gmx_restrict          fr,
697                      t_mdatoms                   * gmx_restrict     mdatoms,
698                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
699                      t_nrnb                      * gmx_restrict        nrnb)
700 {
701     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
702      * just 0 for non-waters.
703      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
704      * jnr indices corresponding to data put in the four positions in the SIMD register.
705      */
706     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
707     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
708     int              jnrA,jnrB;
709     int              j_coord_offsetA,j_coord_offsetB;
710     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
711     real             rcutoff_scalar;
712     real             *shiftvec,*fshift,*x,*f;
713     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
714     int              vdwioffset0;
715     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
716     int              vdwioffset1;
717     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
718     int              vdwioffset2;
719     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
720     int              vdwjidx0A,vdwjidx0B;
721     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
722     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
723     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
724     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
725     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
726     real             *charge;
727     int              nvdwtype;
728     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
729     int              *vdwtype;
730     real             *vdwparam;
731     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
732     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
733     _fjsp_v2r8           c6grid_00;
734     _fjsp_v2r8           c6grid_10;
735     _fjsp_v2r8           c6grid_20;
736     real                 *vdwgridparam;
737     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
738     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
739     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
740     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
741     real             *ewtab;
742     _fjsp_v2r8       itab_tmp;
743     _fjsp_v2r8       dummy_mask,cutoff_mask;
744     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
745     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
746     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
747
748     x                = xx[0];
749     f                = ff[0];
750
751     nri              = nlist->nri;
752     iinr             = nlist->iinr;
753     jindex           = nlist->jindex;
754     jjnr             = nlist->jjnr;
755     shiftidx         = nlist->shift;
756     gid              = nlist->gid;
757     shiftvec         = fr->shift_vec[0];
758     fshift           = fr->fshift[0];
759     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
760     charge           = mdatoms->chargeA;
761     nvdwtype         = fr->ntype;
762     vdwparam         = fr->nbfp;
763     vdwtype          = mdatoms->typeA;
764     vdwgridparam     = fr->ljpme_c6grid;
765     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
766     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
767     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
768
769     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
770     ewtab            = fr->ic->tabq_coul_F;
771     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
772     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
773
774     /* Setup water-specific parameters */
775     inr              = nlist->iinr[0];
776     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
777     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
778     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
779     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
780
781     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
782     rcutoff_scalar   = fr->rcoulomb;
783     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
784     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
785
786     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
787     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
788
789     /* Avoid stupid compiler warnings */
790     jnrA = jnrB = 0;
791     j_coord_offsetA = 0;
792     j_coord_offsetB = 0;
793
794     outeriter        = 0;
795     inneriter        = 0;
796
797     /* Start outer loop over neighborlists */
798     for(iidx=0; iidx<nri; iidx++)
799     {
800         /* Load shift vector for this list */
801         i_shift_offset   = DIM*shiftidx[iidx];
802
803         /* Load limits for loop over neighbors */
804         j_index_start    = jindex[iidx];
805         j_index_end      = jindex[iidx+1];
806
807         /* Get outer coordinate index */
808         inr              = iinr[iidx];
809         i_coord_offset   = DIM*inr;
810
811         /* Load i particle coords and add shift vector */
812         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
813                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
814
815         fix0             = _fjsp_setzero_v2r8();
816         fiy0             = _fjsp_setzero_v2r8();
817         fiz0             = _fjsp_setzero_v2r8();
818         fix1             = _fjsp_setzero_v2r8();
819         fiy1             = _fjsp_setzero_v2r8();
820         fiz1             = _fjsp_setzero_v2r8();
821         fix2             = _fjsp_setzero_v2r8();
822         fiy2             = _fjsp_setzero_v2r8();
823         fiz2             = _fjsp_setzero_v2r8();
824
825         /* Start inner kernel loop */
826         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
827         {
828
829             /* Get j neighbor index, and coordinate index */
830             jnrA             = jjnr[jidx];
831             jnrB             = jjnr[jidx+1];
832             j_coord_offsetA  = DIM*jnrA;
833             j_coord_offsetB  = DIM*jnrB;
834
835             /* load j atom coordinates */
836             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
837                                               &jx0,&jy0,&jz0);
838
839             /* Calculate displacement vector */
840             dx00             = _fjsp_sub_v2r8(ix0,jx0);
841             dy00             = _fjsp_sub_v2r8(iy0,jy0);
842             dz00             = _fjsp_sub_v2r8(iz0,jz0);
843             dx10             = _fjsp_sub_v2r8(ix1,jx0);
844             dy10             = _fjsp_sub_v2r8(iy1,jy0);
845             dz10             = _fjsp_sub_v2r8(iz1,jz0);
846             dx20             = _fjsp_sub_v2r8(ix2,jx0);
847             dy20             = _fjsp_sub_v2r8(iy2,jy0);
848             dz20             = _fjsp_sub_v2r8(iz2,jz0);
849
850             /* Calculate squared distance and things based on it */
851             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
852             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
853             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
854
855             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
856             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
857             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
858
859             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
860             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
861             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
862
863             /* Load parameters for j particles */
864             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
865             vdwjidx0A        = 2*vdwtype[jnrA+0];
866             vdwjidx0B        = 2*vdwtype[jnrB+0];
867
868             fjx0             = _fjsp_setzero_v2r8();
869             fjy0             = _fjsp_setzero_v2r8();
870             fjz0             = _fjsp_setzero_v2r8();
871
872             /**************************
873              * CALCULATE INTERACTIONS *
874              **************************/
875
876             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
877             {
878
879             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
880
881             /* Compute parameters for interactions between i and j atoms */
882             qq00             = _fjsp_mul_v2r8(iq0,jq0);
883             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
884                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
885
886             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
887                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
888
889             /* EWALD ELECTROSTATICS */
890
891             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
892             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
893             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
894             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
895             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
896
897             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
898                                          &ewtabF,&ewtabFn);
899             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
900             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
901
902             /* Analytical LJ-PME */
903             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
904             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
905             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
906             exponent         = gmx_simd_exp_d(ewcljrsq);
907             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
908             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
909             /* f6A = 6 * C6grid * (1 - poly) */
910             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
911             /* f6B = C6grid * exponent * beta^6 */
912             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
913             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
914             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
915
916             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
917
918             fscal            = _fjsp_add_v2r8(felec,fvdw);
919
920             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
921
922             /* Update vectorial force */
923             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
924             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
925             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
926             
927             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
928             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
929             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
930
931             }
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
938             {
939
940             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq10             = _fjsp_mul_v2r8(iq1,jq0);
944
945             /* EWALD ELECTROSTATICS */
946
947             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
948             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
949             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
950             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
951             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
952
953             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
954                                          &ewtabF,&ewtabFn);
955             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
956             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
957
958             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
959
960             fscal            = felec;
961
962             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
963
964             /* Update vectorial force */
965             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
966             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
967             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
968             
969             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
970             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
971             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
972
973             }
974
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
980             {
981
982             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
983
984             /* Compute parameters for interactions between i and j atoms */
985             qq20             = _fjsp_mul_v2r8(iq2,jq0);
986
987             /* EWALD ELECTROSTATICS */
988
989             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
990             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
991             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
992             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
993             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
994
995             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
996                                          &ewtabF,&ewtabFn);
997             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
998             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
999
1000             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1001
1002             fscal            = felec;
1003
1004             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1005
1006             /* Update vectorial force */
1007             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1008             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1009             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1010             
1011             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1012             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1013             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1014
1015             }
1016
1017             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1018
1019             /* Inner loop uses 151 flops */
1020         }
1021
1022         if(jidx<j_index_end)
1023         {
1024
1025             jnrA             = jjnr[jidx];
1026             j_coord_offsetA  = DIM*jnrA;
1027
1028             /* load j atom coordinates */
1029             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1030                                               &jx0,&jy0,&jz0);
1031
1032             /* Calculate displacement vector */
1033             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1034             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1035             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1036             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1037             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1038             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1039             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1040             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1041             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1042
1043             /* Calculate squared distance and things based on it */
1044             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1045             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1046             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1047
1048             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1049             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1050             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1051
1052             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1053             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1054             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1055
1056             /* Load parameters for j particles */
1057             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1058             vdwjidx0A        = 2*vdwtype[jnrA+0];
1059
1060             fjx0             = _fjsp_setzero_v2r8();
1061             fjy0             = _fjsp_setzero_v2r8();
1062             fjz0             = _fjsp_setzero_v2r8();
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1069             {
1070
1071             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1072
1073             /* Compute parameters for interactions between i and j atoms */
1074             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1075             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
1076                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1077
1078             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
1079                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
1080
1081             /* EWALD ELECTROSTATICS */
1082
1083             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1084             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1085             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1086             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1087             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1088
1089             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1090             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1091             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1092
1093             /* Analytical LJ-PME */
1094             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1095             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
1096             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
1097             exponent         = gmx_simd_exp_d(ewcljrsq);
1098             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1099             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
1100             /* f6A = 6 * C6grid * (1 - poly) */
1101             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
1102             /* f6B = C6grid * exponent * beta^6 */
1103             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
1104             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1105             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1106
1107             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1108
1109             fscal            = _fjsp_add_v2r8(felec,fvdw);
1110
1111             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1112
1113             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1114
1115             /* Update vectorial force */
1116             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1117             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1118             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1119             
1120             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1121             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1122             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1123
1124             }
1125
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1131             {
1132
1133             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1134
1135             /* Compute parameters for interactions between i and j atoms */
1136             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1137
1138             /* EWALD ELECTROSTATICS */
1139
1140             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1141             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1142             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1143             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1144             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1145
1146             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1147             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1148             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1149
1150             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1151
1152             fscal            = felec;
1153
1154             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1155
1156             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1157
1158             /* Update vectorial force */
1159             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1160             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1161             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1162             
1163             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1164             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1165             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1166
1167             }
1168
1169             /**************************
1170              * CALCULATE INTERACTIONS *
1171              **************************/
1172
1173             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1174             {
1175
1176             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1177
1178             /* Compute parameters for interactions between i and j atoms */
1179             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1180
1181             /* EWALD ELECTROSTATICS */
1182
1183             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1184             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1185             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1186             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1187             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1188
1189             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1190             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1191             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1192
1193             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1194
1195             fscal            = felec;
1196
1197             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1198
1199             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1200
1201             /* Update vectorial force */
1202             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1203             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1204             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1205             
1206             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1207             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1208             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1209
1210             }
1211
1212             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1213
1214             /* Inner loop uses 151 flops */
1215         }
1216
1217         /* End of innermost loop */
1218
1219         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1220                                               f+i_coord_offset,fshift+i_shift_offset);
1221
1222         /* Increment number of inner iterations */
1223         inneriter                  += j_index_end - j_index_start;
1224
1225         /* Outer loop uses 18 flops */
1226     }
1227
1228     /* Increment number of outer iterations */
1229     outeriter        += nri;
1230
1231     /* Update outer/inner flops */
1232
1233     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1234 }