Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8           c6grid_00;
101     _fjsp_v2r8           c6grid_10;
102     _fjsp_v2r8           c6grid_20;
103     real                 *vdwgridparam;
104     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
106     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
107     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     _fjsp_v2r8       itab_tmp;
110     _fjsp_v2r8       dummy_mask,cutoff_mask;
111     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
112     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
113     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
114
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
133     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
134     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
135
136     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
139     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
144     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
145     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
149     rcutoff_scalar   = fr->rcoulomb;
150     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
151     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
152
153     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
154     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _fjsp_setzero_v2r8();
183         fiy0             = _fjsp_setzero_v2r8();
184         fiz0             = _fjsp_setzero_v2r8();
185         fix1             = _fjsp_setzero_v2r8();
186         fiy1             = _fjsp_setzero_v2r8();
187         fiz1             = _fjsp_setzero_v2r8();
188         fix2             = _fjsp_setzero_v2r8();
189         fiy2             = _fjsp_setzero_v2r8();
190         fiz2             = _fjsp_setzero_v2r8();
191
192         /* Reset potential sums */
193         velecsum         = _fjsp_setzero_v2r8();
194         vvdwsum          = _fjsp_setzero_v2r8();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205
206             /* load j atom coordinates */
207             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _fjsp_sub_v2r8(ix0,jx0);
212             dy00             = _fjsp_sub_v2r8(iy0,jy0);
213             dz00             = _fjsp_sub_v2r8(iz0,jz0);
214             dx10             = _fjsp_sub_v2r8(ix1,jx0);
215             dy10             = _fjsp_sub_v2r8(iy1,jy0);
216             dz10             = _fjsp_sub_v2r8(iz1,jz0);
217             dx20             = _fjsp_sub_v2r8(ix2,jx0);
218             dy20             = _fjsp_sub_v2r8(iy2,jy0);
219             dz20             = _fjsp_sub_v2r8(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
223             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
224             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
225
226             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
227             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
228             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
229
230             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
231             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
232             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _fjsp_setzero_v2r8();
240             fjy0             = _fjsp_setzero_v2r8();
241             fjz0             = _fjsp_setzero_v2r8();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
248             {
249
250             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _fjsp_mul_v2r8(iq0,jq0);
254             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
256
257             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
258                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
259
260             /* EWALD ELECTROSTATICS */
261
262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
263             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
264             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
265             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
266             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
267
268             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
269             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
270             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
271             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
272             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
273             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
274             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
275             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
276             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
277             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
278
279             /* Analytical LJ-PME */
280             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
281             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
282             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
283             exponent         = gmx_simd_exp_d(-ewcljrsq);
284             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
285             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
286             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
287             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
288             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
289             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
290                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
291             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
292             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
293
294             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
298             velecsum         = _fjsp_add_v2r8(velecsum,velec);
299             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
300             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
301
302             fscal            = _fjsp_add_v2r8(felec,fvdw);
303
304             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
305
306             /* Update vectorial force */
307             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
308             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
309             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
310             
311             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
312             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
313             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
314
315             }
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
322             {
323
324             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _fjsp_mul_v2r8(iq1,jq0);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
333             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
334             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
335             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
336
337             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
338             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
339             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
340             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
341             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
342             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
343             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
344             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
345             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
346             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
347
348             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
352             velecsum         = _fjsp_add_v2r8(velecsum,velec);
353
354             fscal            = felec;
355
356             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
357
358             /* Update vectorial force */
359             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
360             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
361             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
362             
363             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
364             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
365             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
366
367             }
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
374             {
375
376             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq20             = _fjsp_mul_v2r8(iq2,jq0);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
384             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
385             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
386             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
387             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
388
389             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
390             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
391             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
392             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
393             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
394             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
395             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
396             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
397             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
398             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
399
400             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
401
402             /* Update potential sum for this i atom from the interaction with this j atom. */
403             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
404             velecsum         = _fjsp_add_v2r8(velecsum,velec);
405
406             fscal            = felec;
407
408             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
409
410             /* Update vectorial force */
411             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
412             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
413             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
414             
415             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
416             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
417             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
418
419             }
420
421             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
422
423             /* Inner loop uses 180 flops */
424         }
425
426         if(jidx<j_index_end)
427         {
428
429             jnrA             = jjnr[jidx];
430             j_coord_offsetA  = DIM*jnrA;
431
432             /* load j atom coordinates */
433             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
434                                               &jx0,&jy0,&jz0);
435
436             /* Calculate displacement vector */
437             dx00             = _fjsp_sub_v2r8(ix0,jx0);
438             dy00             = _fjsp_sub_v2r8(iy0,jy0);
439             dz00             = _fjsp_sub_v2r8(iz0,jz0);
440             dx10             = _fjsp_sub_v2r8(ix1,jx0);
441             dy10             = _fjsp_sub_v2r8(iy1,jy0);
442             dz10             = _fjsp_sub_v2r8(iz1,jz0);
443             dx20             = _fjsp_sub_v2r8(ix2,jx0);
444             dy20             = _fjsp_sub_v2r8(iy2,jy0);
445             dz20             = _fjsp_sub_v2r8(iz2,jz0);
446
447             /* Calculate squared distance and things based on it */
448             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
449             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
450             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
451
452             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
453             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
454             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
455
456             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
457             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
458             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
459
460             /* Load parameters for j particles */
461             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463
464             fjx0             = _fjsp_setzero_v2r8();
465             fjy0             = _fjsp_setzero_v2r8();
466             fjz0             = _fjsp_setzero_v2r8();
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
473             {
474
475             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
476
477             /* Compute parameters for interactions between i and j atoms */
478             qq00             = _fjsp_mul_v2r8(iq0,jq0);
479             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
480
481             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
482
483             /* EWALD ELECTROSTATICS */
484
485             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
486             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
487             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
488             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
489             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
490
491             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
492             ewtabD           = _fjsp_setzero_v2r8();
493             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
494             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
495             ewtabFn          = _fjsp_setzero_v2r8();
496             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
497             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
498             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
499             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
500             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
501
502             /* Analytical LJ-PME */
503             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
504             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
505             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
506             exponent         = gmx_simd_exp_d(-ewcljrsq);
507             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
508             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
509             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
510             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
511             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
512             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
513                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
514             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
515             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
516
517             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
521             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
522             velecsum         = _fjsp_add_v2r8(velecsum,velec);
523             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
524             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
525             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
526
527             fscal            = _fjsp_add_v2r8(felec,fvdw);
528
529             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
530
531             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
532
533             /* Update vectorial force */
534             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
535             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
536             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
537             
538             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
539             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
540             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
541
542             }
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
549             {
550
551             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq10             = _fjsp_mul_v2r8(iq1,jq0);
555
556             /* EWALD ELECTROSTATICS */
557
558             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
559             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
560             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
561             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
562             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
563
564             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
565             ewtabD           = _fjsp_setzero_v2r8();
566             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
567             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
568             ewtabFn          = _fjsp_setzero_v2r8();
569             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
570             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
571             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
572             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv10,sh_ewald),velec));
573             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
574
575             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
579             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
580             velecsum         = _fjsp_add_v2r8(velecsum,velec);
581
582             fscal            = felec;
583
584             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
585
586             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
587
588             /* Update vectorial force */
589             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
590             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
591             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
592             
593             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
594             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
595             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
596
597             }
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
604             {
605
606             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq20             = _fjsp_mul_v2r8(iq2,jq0);
610
611             /* EWALD ELECTROSTATICS */
612
613             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
614             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
615             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
616             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
617             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
618
619             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
620             ewtabD           = _fjsp_setzero_v2r8();
621             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
622             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
623             ewtabFn          = _fjsp_setzero_v2r8();
624             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
625             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
626             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
627             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv20,sh_ewald),velec));
628             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
629
630             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
631
632             /* Update potential sum for this i atom from the interaction with this j atom. */
633             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
634             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
635             velecsum         = _fjsp_add_v2r8(velecsum,velec);
636
637             fscal            = felec;
638
639             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
640
641             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
642
643             /* Update vectorial force */
644             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
645             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
646             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
647             
648             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
649             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
650             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
651
652             }
653
654             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
655
656             /* Inner loop uses 180 flops */
657         }
658
659         /* End of innermost loop */
660
661         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
662                                               f+i_coord_offset,fshift+i_shift_offset);
663
664         ggid                        = gid[iidx];
665         /* Update potential energies */
666         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
667         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
668
669         /* Increment number of inner iterations */
670         inneriter                  += j_index_end - j_index_start;
671
672         /* Outer loop uses 20 flops */
673     }
674
675     /* Increment number of outer iterations */
676     outeriter        += nri;
677
678     /* Update outer/inner flops */
679
680     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*180);
681 }
682 /*
683  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sparc64_hpc_ace_double
684  * Electrostatics interaction: Ewald
685  * VdW interaction:            LJEwald
686  * Geometry:                   Water3-Particle
687  * Calculate force/pot:        Force
688  */
689 void
690 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sparc64_hpc_ace_double
691                     (t_nblist                    * gmx_restrict       nlist,
692                      rvec                        * gmx_restrict          xx,
693                      rvec                        * gmx_restrict          ff,
694                      t_forcerec                  * gmx_restrict          fr,
695                      t_mdatoms                   * gmx_restrict     mdatoms,
696                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
697                      t_nrnb                      * gmx_restrict        nrnb)
698 {
699     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
700      * just 0 for non-waters.
701      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
702      * jnr indices corresponding to data put in the four positions in the SIMD register.
703      */
704     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
705     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
706     int              jnrA,jnrB;
707     int              j_coord_offsetA,j_coord_offsetB;
708     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
709     real             rcutoff_scalar;
710     real             *shiftvec,*fshift,*x,*f;
711     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
712     int              vdwioffset0;
713     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
714     int              vdwioffset1;
715     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
716     int              vdwioffset2;
717     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
718     int              vdwjidx0A,vdwjidx0B;
719     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
720     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
721     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
722     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
723     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
724     real             *charge;
725     int              nvdwtype;
726     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
727     int              *vdwtype;
728     real             *vdwparam;
729     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
730     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
731     _fjsp_v2r8           c6grid_00;
732     _fjsp_v2r8           c6grid_10;
733     _fjsp_v2r8           c6grid_20;
734     real                 *vdwgridparam;
735     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
736     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
737     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
738     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
739     real             *ewtab;
740     _fjsp_v2r8       itab_tmp;
741     _fjsp_v2r8       dummy_mask,cutoff_mask;
742     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
743     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
744     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
745
746     x                = xx[0];
747     f                = ff[0];
748
749     nri              = nlist->nri;
750     iinr             = nlist->iinr;
751     jindex           = nlist->jindex;
752     jjnr             = nlist->jjnr;
753     shiftidx         = nlist->shift;
754     gid              = nlist->gid;
755     shiftvec         = fr->shift_vec[0];
756     fshift           = fr->fshift[0];
757     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
758     charge           = mdatoms->chargeA;
759     nvdwtype         = fr->ntype;
760     vdwparam         = fr->nbfp;
761     vdwtype          = mdatoms->typeA;
762     vdwgridparam     = fr->ljpme_c6grid;
763     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
764     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
765     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
766
767     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
768     ewtab            = fr->ic->tabq_coul_F;
769     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
770     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
771
772     /* Setup water-specific parameters */
773     inr              = nlist->iinr[0];
774     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
775     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
776     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
777     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
778
779     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
780     rcutoff_scalar   = fr->rcoulomb;
781     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
782     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
783
784     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
785     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
786
787     /* Avoid stupid compiler warnings */
788     jnrA = jnrB = 0;
789     j_coord_offsetA = 0;
790     j_coord_offsetB = 0;
791
792     outeriter        = 0;
793     inneriter        = 0;
794
795     /* Start outer loop over neighborlists */
796     for(iidx=0; iidx<nri; iidx++)
797     {
798         /* Load shift vector for this list */
799         i_shift_offset   = DIM*shiftidx[iidx];
800
801         /* Load limits for loop over neighbors */
802         j_index_start    = jindex[iidx];
803         j_index_end      = jindex[iidx+1];
804
805         /* Get outer coordinate index */
806         inr              = iinr[iidx];
807         i_coord_offset   = DIM*inr;
808
809         /* Load i particle coords and add shift vector */
810         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
811                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
812
813         fix0             = _fjsp_setzero_v2r8();
814         fiy0             = _fjsp_setzero_v2r8();
815         fiz0             = _fjsp_setzero_v2r8();
816         fix1             = _fjsp_setzero_v2r8();
817         fiy1             = _fjsp_setzero_v2r8();
818         fiz1             = _fjsp_setzero_v2r8();
819         fix2             = _fjsp_setzero_v2r8();
820         fiy2             = _fjsp_setzero_v2r8();
821         fiz2             = _fjsp_setzero_v2r8();
822
823         /* Start inner kernel loop */
824         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
825         {
826
827             /* Get j neighbor index, and coordinate index */
828             jnrA             = jjnr[jidx];
829             jnrB             = jjnr[jidx+1];
830             j_coord_offsetA  = DIM*jnrA;
831             j_coord_offsetB  = DIM*jnrB;
832
833             /* load j atom coordinates */
834             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
835                                               &jx0,&jy0,&jz0);
836
837             /* Calculate displacement vector */
838             dx00             = _fjsp_sub_v2r8(ix0,jx0);
839             dy00             = _fjsp_sub_v2r8(iy0,jy0);
840             dz00             = _fjsp_sub_v2r8(iz0,jz0);
841             dx10             = _fjsp_sub_v2r8(ix1,jx0);
842             dy10             = _fjsp_sub_v2r8(iy1,jy0);
843             dz10             = _fjsp_sub_v2r8(iz1,jz0);
844             dx20             = _fjsp_sub_v2r8(ix2,jx0);
845             dy20             = _fjsp_sub_v2r8(iy2,jy0);
846             dz20             = _fjsp_sub_v2r8(iz2,jz0);
847
848             /* Calculate squared distance and things based on it */
849             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
850             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
851             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
852
853             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
854             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
855             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
856
857             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
858             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
859             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
860
861             /* Load parameters for j particles */
862             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
863             vdwjidx0A        = 2*vdwtype[jnrA+0];
864             vdwjidx0B        = 2*vdwtype[jnrB+0];
865
866             fjx0             = _fjsp_setzero_v2r8();
867             fjy0             = _fjsp_setzero_v2r8();
868             fjz0             = _fjsp_setzero_v2r8();
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
875             {
876
877             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
878
879             /* Compute parameters for interactions between i and j atoms */
880             qq00             = _fjsp_mul_v2r8(iq0,jq0);
881             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
882                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
883
884             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
885                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
886
887             /* EWALD ELECTROSTATICS */
888
889             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
890             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
891             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
892             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
893             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
894
895             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
896                                          &ewtabF,&ewtabFn);
897             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
898             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
899
900             /* Analytical LJ-PME */
901             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
902             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
903             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
904             exponent         = gmx_simd_exp_d(-ewcljrsq);
905             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
906             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
907             /* f6A = 6 * C6grid * (1 - poly) */
908             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
909             /* f6B = C6grid * exponent * beta^6 */
910             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
911             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
912             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
913
914             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
915
916             fscal            = _fjsp_add_v2r8(felec,fvdw);
917
918             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
919
920             /* Update vectorial force */
921             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
922             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
923             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
924             
925             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
926             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
927             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
928
929             }
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
936             {
937
938             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq10             = _fjsp_mul_v2r8(iq1,jq0);
942
943             /* EWALD ELECTROSTATICS */
944
945             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
946             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
947             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
948             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
949             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
950
951             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
952                                          &ewtabF,&ewtabFn);
953             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
954             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
955
956             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
957
958             fscal            = felec;
959
960             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
961
962             /* Update vectorial force */
963             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
964             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
965             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
966             
967             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
968             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
969             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
970
971             }
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
978             {
979
980             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq20             = _fjsp_mul_v2r8(iq2,jq0);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
989             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
990             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
991             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
992
993             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
994                                          &ewtabF,&ewtabFn);
995             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
996             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
997
998             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
999
1000             fscal            = felec;
1001
1002             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1003
1004             /* Update vectorial force */
1005             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1006             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1007             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1008             
1009             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1010             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1011             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1012
1013             }
1014
1015             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1016
1017             /* Inner loop uses 151 flops */
1018         }
1019
1020         if(jidx<j_index_end)
1021         {
1022
1023             jnrA             = jjnr[jidx];
1024             j_coord_offsetA  = DIM*jnrA;
1025
1026             /* load j atom coordinates */
1027             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1028                                               &jx0,&jy0,&jz0);
1029
1030             /* Calculate displacement vector */
1031             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1032             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1033             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1034             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1035             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1036             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1037             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1038             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1039             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1040
1041             /* Calculate squared distance and things based on it */
1042             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1043             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1044             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1045
1046             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1047             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1048             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1049
1050             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
1051             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1052             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1053
1054             /* Load parameters for j particles */
1055             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1056             vdwjidx0A        = 2*vdwtype[jnrA+0];
1057
1058             fjx0             = _fjsp_setzero_v2r8();
1059             fjy0             = _fjsp_setzero_v2r8();
1060             fjz0             = _fjsp_setzero_v2r8();
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
1067             {
1068
1069             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq00             = _fjsp_mul_v2r8(iq0,jq0);
1073             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1074
1075             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
1076
1077             /* EWALD ELECTROSTATICS */
1078
1079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1080             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
1081             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1082             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1083             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1084
1085             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1086             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1087             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
1088
1089             /* Analytical LJ-PME */
1090             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
1091             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
1092             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
1093             exponent         = gmx_simd_exp_d(-ewcljrsq);
1094             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1095             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
1096             /* f6A = 6 * C6grid * (1 - poly) */
1097             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
1098             /* f6B = C6grid * exponent * beta^6 */
1099             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
1100             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1101             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1102
1103             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
1104
1105             fscal            = _fjsp_add_v2r8(felec,fvdw);
1106
1107             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1108
1109             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1110
1111             /* Update vectorial force */
1112             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1113             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1114             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1115             
1116             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1117             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1118             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1119
1120             }
1121
1122             /**************************
1123              * CALCULATE INTERACTIONS *
1124              **************************/
1125
1126             if (gmx_fjsp_any_lt_v2r8(rsq10,rcutoff2))
1127             {
1128
1129             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1130
1131             /* Compute parameters for interactions between i and j atoms */
1132             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1133
1134             /* EWALD ELECTROSTATICS */
1135
1136             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1137             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1138             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1139             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1140             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1141
1142             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1143             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1144             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1145
1146             cutoff_mask      = _fjsp_cmplt_v2r8(rsq10,rcutoff2);
1147
1148             fscal            = felec;
1149
1150             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1151
1152             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1153
1154             /* Update vectorial force */
1155             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1156             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1157             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1158             
1159             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1160             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1161             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1162
1163             }
1164
1165             /**************************
1166              * CALCULATE INTERACTIONS *
1167              **************************/
1168
1169             if (gmx_fjsp_any_lt_v2r8(rsq20,rcutoff2))
1170             {
1171
1172             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1173
1174             /* Compute parameters for interactions between i and j atoms */
1175             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1176
1177             /* EWALD ELECTROSTATICS */
1178
1179             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1180             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1181             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1182             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1183             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1184
1185             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1186             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1187             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1188
1189             cutoff_mask      = _fjsp_cmplt_v2r8(rsq20,rcutoff2);
1190
1191             fscal            = felec;
1192
1193             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
1194
1195             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1196
1197             /* Update vectorial force */
1198             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1199             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1200             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1201             
1202             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1203             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1204             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1205
1206             }
1207
1208             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1209
1210             /* Inner loop uses 151 flops */
1211         }
1212
1213         /* End of innermost loop */
1214
1215         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1216                                               f+i_coord_offset,fshift+i_shift_offset);
1217
1218         /* Increment number of inner iterations */
1219         inneriter                  += j_index_end - j_index_start;
1220
1221         /* Outer loop uses 18 flops */
1222     }
1223
1224     /* Increment number of outer iterations */
1225     outeriter        += nri;
1226
1227     /* Update outer/inner flops */
1228
1229     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1230 }