Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/legacyheaders/vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
93     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
94     _fjsp_v2r8           c6grid_00;
95     real                 *vdwgridparam;
96     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
98     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
99     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     _fjsp_v2r8       itab_tmp;
102     _fjsp_v2r8       dummy_mask,cutoff_mask;
103     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
104     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
105     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
106
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
125     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
126     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
127
128     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
131     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
136     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
139     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _fjsp_setzero_v2r8();
167         fiy0             = _fjsp_setzero_v2r8();
168         fiz0             = _fjsp_setzero_v2r8();
169
170         /* Load parameters for i particles */
171         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _fjsp_setzero_v2r8();
176         vvdwsum          = _fjsp_setzero_v2r8();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _fjsp_sub_v2r8(ix0,jx0);
194             dy00             = _fjsp_sub_v2r8(iy0,jy0);
195             dz00             = _fjsp_sub_v2r8(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
199
200             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
201
202             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
214             {
215
216             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _fjsp_mul_v2r8(iq0,jq0);
220             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222
223             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
224                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
225
226             /* EWALD ELECTROSTATICS */
227
228             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
229             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
230             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
231             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
232             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
233
234             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
235             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
236             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
237             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
238             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
239             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
240             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
241             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
242             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
243             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
244
245             /* Analytical LJ-PME */
246             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
247             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
248             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
249             exponent         = gmx_simd_exp_d(ewcljrsq);
250             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
251             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
252             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
253             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
254             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
255             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
256                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
257             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
258             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
259
260             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
264             velecsum         = _fjsp_add_v2r8(velecsum,velec);
265             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
266             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
267
268             fscal            = _fjsp_add_v2r8(felec,fvdw);
269
270             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
271
272             /* Update vectorial force */
273             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
274             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
275             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
276             
277             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
278
279             }
280
281             /* Inner loop uses 79 flops */
282         }
283
284         if(jidx<j_index_end)
285         {
286
287             jnrA             = jjnr[jidx];
288             j_coord_offsetA  = DIM*jnrA;
289
290             /* load j atom coordinates */
291             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
292                                               &jx0,&jy0,&jz0);
293
294             /* Calculate displacement vector */
295             dx00             = _fjsp_sub_v2r8(ix0,jx0);
296             dy00             = _fjsp_sub_v2r8(iy0,jy0);
297             dz00             = _fjsp_sub_v2r8(iz0,jz0);
298
299             /* Calculate squared distance and things based on it */
300             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
301
302             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
303
304             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
305
306             /* Load parameters for j particles */
307             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
308             vdwjidx0A        = 2*vdwtype[jnrA+0];
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
315             {
316
317             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq00             = _fjsp_mul_v2r8(iq0,jq0);
321             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
322                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
323
324             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
325                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
331             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
332             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
333             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
334
335             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
336             ewtabD           = _fjsp_setzero_v2r8();
337             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
338             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
339             ewtabFn          = _fjsp_setzero_v2r8();
340             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
341             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
342             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
343             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
344             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
345
346             /* Analytical LJ-PME */
347             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
348             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
349             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
350             exponent         = gmx_simd_exp_d(ewcljrsq);
351             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
352             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
353             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
354             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
355             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
356             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
357                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
358             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
359             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
360
361             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
365             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
366             velecsum         = _fjsp_add_v2r8(velecsum,velec);
367             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
368             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
369             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
370
371             fscal            = _fjsp_add_v2r8(felec,fvdw);
372
373             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
374
375             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
376
377             /* Update vectorial force */
378             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
379             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
380             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
381             
382             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
383
384             }
385
386             /* Inner loop uses 79 flops */
387         }
388
389         /* End of innermost loop */
390
391         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
392                                               f+i_coord_offset,fshift+i_shift_offset);
393
394         ggid                        = gid[iidx];
395         /* Update potential energies */
396         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
397         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
398
399         /* Increment number of inner iterations */
400         inneriter                  += j_index_end - j_index_start;
401
402         /* Outer loop uses 9 flops */
403     }
404
405     /* Increment number of outer iterations */
406     outeriter        += nri;
407
408     /* Update outer/inner flops */
409
410     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*79);
411 }
412 /*
413  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sparc64_hpc_ace_double
414  * Electrostatics interaction: Ewald
415  * VdW interaction:            LJEwald
416  * Geometry:                   Particle-Particle
417  * Calculate force/pot:        Force
418  */
419 void
420 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sparc64_hpc_ace_double
421                     (t_nblist                    * gmx_restrict       nlist,
422                      rvec                        * gmx_restrict          xx,
423                      rvec                        * gmx_restrict          ff,
424                      t_forcerec                  * gmx_restrict          fr,
425                      t_mdatoms                   * gmx_restrict     mdatoms,
426                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
427                      t_nrnb                      * gmx_restrict        nrnb)
428 {
429     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
430      * just 0 for non-waters.
431      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
432      * jnr indices corresponding to data put in the four positions in the SIMD register.
433      */
434     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
435     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
436     int              jnrA,jnrB;
437     int              j_coord_offsetA,j_coord_offsetB;
438     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
439     real             rcutoff_scalar;
440     real             *shiftvec,*fshift,*x,*f;
441     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
442     int              vdwioffset0;
443     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
444     int              vdwjidx0A,vdwjidx0B;
445     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
446     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
447     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
448     real             *charge;
449     int              nvdwtype;
450     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
451     int              *vdwtype;
452     real             *vdwparam;
453     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
454     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
455     _fjsp_v2r8           c6grid_00;
456     real                 *vdwgridparam;
457     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
458     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
459     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
460     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
461     real             *ewtab;
462     _fjsp_v2r8       itab_tmp;
463     _fjsp_v2r8       dummy_mask,cutoff_mask;
464     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
465     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
466     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
467
468     x                = xx[0];
469     f                = ff[0];
470
471     nri              = nlist->nri;
472     iinr             = nlist->iinr;
473     jindex           = nlist->jindex;
474     jjnr             = nlist->jjnr;
475     shiftidx         = nlist->shift;
476     gid              = nlist->gid;
477     shiftvec         = fr->shift_vec[0];
478     fshift           = fr->fshift[0];
479     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
480     charge           = mdatoms->chargeA;
481     nvdwtype         = fr->ntype;
482     vdwparam         = fr->nbfp;
483     vdwtype          = mdatoms->typeA;
484     vdwgridparam     = fr->ljpme_c6grid;
485     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
486     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
487     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
488
489     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
490     ewtab            = fr->ic->tabq_coul_F;
491     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
492     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
493
494     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
495     rcutoff_scalar   = fr->rcoulomb;
496     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
497     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
498
499     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
500     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
501
502     /* Avoid stupid compiler warnings */
503     jnrA = jnrB = 0;
504     j_coord_offsetA = 0;
505     j_coord_offsetB = 0;
506
507     outeriter        = 0;
508     inneriter        = 0;
509
510     /* Start outer loop over neighborlists */
511     for(iidx=0; iidx<nri; iidx++)
512     {
513         /* Load shift vector for this list */
514         i_shift_offset   = DIM*shiftidx[iidx];
515
516         /* Load limits for loop over neighbors */
517         j_index_start    = jindex[iidx];
518         j_index_end      = jindex[iidx+1];
519
520         /* Get outer coordinate index */
521         inr              = iinr[iidx];
522         i_coord_offset   = DIM*inr;
523
524         /* Load i particle coords and add shift vector */
525         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
526
527         fix0             = _fjsp_setzero_v2r8();
528         fiy0             = _fjsp_setzero_v2r8();
529         fiz0             = _fjsp_setzero_v2r8();
530
531         /* Load parameters for i particles */
532         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
533         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
534
535         /* Start inner kernel loop */
536         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
537         {
538
539             /* Get j neighbor index, and coordinate index */
540             jnrA             = jjnr[jidx];
541             jnrB             = jjnr[jidx+1];
542             j_coord_offsetA  = DIM*jnrA;
543             j_coord_offsetB  = DIM*jnrB;
544
545             /* load j atom coordinates */
546             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
547                                               &jx0,&jy0,&jz0);
548
549             /* Calculate displacement vector */
550             dx00             = _fjsp_sub_v2r8(ix0,jx0);
551             dy00             = _fjsp_sub_v2r8(iy0,jy0);
552             dz00             = _fjsp_sub_v2r8(iz0,jz0);
553
554             /* Calculate squared distance and things based on it */
555             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
556
557             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
558
559             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
560
561             /* Load parameters for j particles */
562             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
563             vdwjidx0A        = 2*vdwtype[jnrA+0];
564             vdwjidx0B        = 2*vdwtype[jnrB+0];
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
571             {
572
573             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq00             = _fjsp_mul_v2r8(iq0,jq0);
577             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
578                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
579
580             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
581                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
587             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
588             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
589             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
590
591             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
592                                          &ewtabF,&ewtabFn);
593             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
594             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
595
596             /* Analytical LJ-PME */
597             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
598             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
599             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
600             exponent         = gmx_simd_exp_d(ewcljrsq);
601             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
602             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
603             /* f6A = 6 * C6grid * (1 - poly) */
604             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
605             /* f6B = C6grid * exponent * beta^6 */
606             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
607             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
608             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
609
610             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
611
612             fscal            = _fjsp_add_v2r8(felec,fvdw);
613
614             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
615
616             /* Update vectorial force */
617             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
618             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
619             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
620             
621             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
622
623             }
624
625             /* Inner loop uses 64 flops */
626         }
627
628         if(jidx<j_index_end)
629         {
630
631             jnrA             = jjnr[jidx];
632             j_coord_offsetA  = DIM*jnrA;
633
634             /* load j atom coordinates */
635             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
636                                               &jx0,&jy0,&jz0);
637
638             /* Calculate displacement vector */
639             dx00             = _fjsp_sub_v2r8(ix0,jx0);
640             dy00             = _fjsp_sub_v2r8(iy0,jy0);
641             dz00             = _fjsp_sub_v2r8(iz0,jz0);
642
643             /* Calculate squared distance and things based on it */
644             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
645
646             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
647
648             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
649
650             /* Load parameters for j particles */
651             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
652             vdwjidx0A        = 2*vdwtype[jnrA+0];
653
654             /**************************
655              * CALCULATE INTERACTIONS *
656              **************************/
657
658             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
659             {
660
661             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq00             = _fjsp_mul_v2r8(iq0,jq0);
665             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
666                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
667
668             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
669                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
670
671             /* EWALD ELECTROSTATICS */
672
673             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
674             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
675             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
676             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
677             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
678
679             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
680             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
681             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
682
683             /* Analytical LJ-PME */
684             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
685             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
686             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
687             exponent         = gmx_simd_exp_d(ewcljrsq);
688             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
689             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
690             /* f6A = 6 * C6grid * (1 - poly) */
691             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
692             /* f6B = C6grid * exponent * beta^6 */
693             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
694             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
695             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
696
697             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
698
699             fscal            = _fjsp_add_v2r8(felec,fvdw);
700
701             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
702
703             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
704
705             /* Update vectorial force */
706             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
707             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
708             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
709             
710             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
711
712             }
713
714             /* Inner loop uses 64 flops */
715         }
716
717         /* End of innermost loop */
718
719         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
720                                               f+i_coord_offset,fshift+i_shift_offset);
721
722         /* Increment number of inner iterations */
723         inneriter                  += j_index_end - j_index_start;
724
725         /* Outer loop uses 7 flops */
726     }
727
728     /* Increment number of outer iterations */
729     outeriter        += nri;
730
731     /* Update outer/inner flops */
732
733     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
734 }