Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8           c6grid_00;
93     real                 *vdwgridparam;
94     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
96     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
97     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     real             *ewtab;
99     _fjsp_v2r8       itab_tmp;
100     _fjsp_v2r8       dummy_mask,cutoff_mask;
101     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
102     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
103     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
104
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121     vdwgridparam     = fr->ljpme_c6grid;
122     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
123     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
124     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
125
126     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
129     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->rcoulomb;
133     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
134     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
135
136     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
137     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _fjsp_setzero_v2r8();
165         fiy0             = _fjsp_setzero_v2r8();
166         fiz0             = _fjsp_setzero_v2r8();
167
168         /* Load parameters for i particles */
169         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
170         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _fjsp_setzero_v2r8();
174         vvdwsum          = _fjsp_setzero_v2r8();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _fjsp_sub_v2r8(ix0,jx0);
192             dy00             = _fjsp_sub_v2r8(iy0,jy0);
193             dz00             = _fjsp_sub_v2r8(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
197
198             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
199
200             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
212             {
213
214             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
215
216             /* Compute parameters for interactions between i and j atoms */
217             qq00             = _fjsp_mul_v2r8(iq0,jq0);
218             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
219                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
220
221             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
222                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
223
224             /* EWALD ELECTROSTATICS */
225
226             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
227             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
228             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
229             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
230             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
231
232             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
233             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
234             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
235             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
236             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
237             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
238             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
239             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
240             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
241             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
242
243             /* Analytical LJ-PME */
244             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
245             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
246             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
247             exponent         = gmx_simd_exp_d(-ewcljrsq);
248             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
249             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
250             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
251             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
252             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
253             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
254                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
255             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
256             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
257
258             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
262             velecsum         = _fjsp_add_v2r8(velecsum,velec);
263             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
264             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
265
266             fscal            = _fjsp_add_v2r8(felec,fvdw);
267
268             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
269
270             /* Update vectorial force */
271             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
272             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
273             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
274             
275             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
276
277             }
278
279             /* Inner loop uses 79 flops */
280         }
281
282         if(jidx<j_index_end)
283         {
284
285             jnrA             = jjnr[jidx];
286             j_coord_offsetA  = DIM*jnrA;
287
288             /* load j atom coordinates */
289             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
290                                               &jx0,&jy0,&jz0);
291
292             /* Calculate displacement vector */
293             dx00             = _fjsp_sub_v2r8(ix0,jx0);
294             dy00             = _fjsp_sub_v2r8(iy0,jy0);
295             dz00             = _fjsp_sub_v2r8(iz0,jz0);
296
297             /* Calculate squared distance and things based on it */
298             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
299
300             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
301
302             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
303
304             /* Load parameters for j particles */
305             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
306             vdwjidx0A        = 2*vdwtype[jnrA+0];
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
313             {
314
315             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq00             = _fjsp_mul_v2r8(iq0,jq0);
319             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
320
321             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
327             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
328             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
329             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
330
331             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
332             ewtabD           = _fjsp_setzero_v2r8();
333             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
334             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
335             ewtabFn          = _fjsp_setzero_v2r8();
336             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
337             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
338             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
339             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
340             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
341
342             /* Analytical LJ-PME */
343             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
344             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
345             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
346             exponent         = gmx_simd_exp_d(-ewcljrsq);
347             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
348             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
349             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
350             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
351             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
352             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
353                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
354             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
355             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
356
357             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
361             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
362             velecsum         = _fjsp_add_v2r8(velecsum,velec);
363             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
364             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
365             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
366
367             fscal            = _fjsp_add_v2r8(felec,fvdw);
368
369             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
370
371             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
372
373             /* Update vectorial force */
374             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
375             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
376             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
377             
378             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
379
380             }
381
382             /* Inner loop uses 79 flops */
383         }
384
385         /* End of innermost loop */
386
387         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
388                                               f+i_coord_offset,fshift+i_shift_offset);
389
390         ggid                        = gid[iidx];
391         /* Update potential energies */
392         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
393         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
394
395         /* Increment number of inner iterations */
396         inneriter                  += j_index_end - j_index_start;
397
398         /* Outer loop uses 9 flops */
399     }
400
401     /* Increment number of outer iterations */
402     outeriter        += nri;
403
404     /* Update outer/inner flops */
405
406     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*79);
407 }
408 /*
409  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sparc64_hpc_ace_double
410  * Electrostatics interaction: Ewald
411  * VdW interaction:            LJEwald
412  * Geometry:                   Particle-Particle
413  * Calculate force/pot:        Force
414  */
415 void
416 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sparc64_hpc_ace_double
417                     (t_nblist                    * gmx_restrict       nlist,
418                      rvec                        * gmx_restrict          xx,
419                      rvec                        * gmx_restrict          ff,
420                      t_forcerec                  * gmx_restrict          fr,
421                      t_mdatoms                   * gmx_restrict     mdatoms,
422                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
423                      t_nrnb                      * gmx_restrict        nrnb)
424 {
425     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
426      * just 0 for non-waters.
427      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
428      * jnr indices corresponding to data put in the four positions in the SIMD register.
429      */
430     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
431     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
432     int              jnrA,jnrB;
433     int              j_coord_offsetA,j_coord_offsetB;
434     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
435     real             rcutoff_scalar;
436     real             *shiftvec,*fshift,*x,*f;
437     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
438     int              vdwioffset0;
439     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
440     int              vdwjidx0A,vdwjidx0B;
441     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
442     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
443     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
444     real             *charge;
445     int              nvdwtype;
446     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
447     int              *vdwtype;
448     real             *vdwparam;
449     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
450     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
451     _fjsp_v2r8           c6grid_00;
452     real                 *vdwgridparam;
453     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
454     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
455     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
456     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
457     real             *ewtab;
458     _fjsp_v2r8       itab_tmp;
459     _fjsp_v2r8       dummy_mask,cutoff_mask;
460     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
461     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
462     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
463
464     x                = xx[0];
465     f                = ff[0];
466
467     nri              = nlist->nri;
468     iinr             = nlist->iinr;
469     jindex           = nlist->jindex;
470     jjnr             = nlist->jjnr;
471     shiftidx         = nlist->shift;
472     gid              = nlist->gid;
473     shiftvec         = fr->shift_vec[0];
474     fshift           = fr->fshift[0];
475     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
476     charge           = mdatoms->chargeA;
477     nvdwtype         = fr->ntype;
478     vdwparam         = fr->nbfp;
479     vdwtype          = mdatoms->typeA;
480     vdwgridparam     = fr->ljpme_c6grid;
481     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
482     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
483     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
484
485     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
486     ewtab            = fr->ic->tabq_coul_F;
487     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
488     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
489
490     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
491     rcutoff_scalar   = fr->rcoulomb;
492     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
493     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
494
495     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
496     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
497
498     /* Avoid stupid compiler warnings */
499     jnrA = jnrB = 0;
500     j_coord_offsetA = 0;
501     j_coord_offsetB = 0;
502
503     outeriter        = 0;
504     inneriter        = 0;
505
506     /* Start outer loop over neighborlists */
507     for(iidx=0; iidx<nri; iidx++)
508     {
509         /* Load shift vector for this list */
510         i_shift_offset   = DIM*shiftidx[iidx];
511
512         /* Load limits for loop over neighbors */
513         j_index_start    = jindex[iidx];
514         j_index_end      = jindex[iidx+1];
515
516         /* Get outer coordinate index */
517         inr              = iinr[iidx];
518         i_coord_offset   = DIM*inr;
519
520         /* Load i particle coords and add shift vector */
521         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
522
523         fix0             = _fjsp_setzero_v2r8();
524         fiy0             = _fjsp_setzero_v2r8();
525         fiz0             = _fjsp_setzero_v2r8();
526
527         /* Load parameters for i particles */
528         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
529         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
530
531         /* Start inner kernel loop */
532         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
533         {
534
535             /* Get j neighbor index, and coordinate index */
536             jnrA             = jjnr[jidx];
537             jnrB             = jjnr[jidx+1];
538             j_coord_offsetA  = DIM*jnrA;
539             j_coord_offsetB  = DIM*jnrB;
540
541             /* load j atom coordinates */
542             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
543                                               &jx0,&jy0,&jz0);
544
545             /* Calculate displacement vector */
546             dx00             = _fjsp_sub_v2r8(ix0,jx0);
547             dy00             = _fjsp_sub_v2r8(iy0,jy0);
548             dz00             = _fjsp_sub_v2r8(iz0,jz0);
549
550             /* Calculate squared distance and things based on it */
551             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
552
553             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
554
555             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
556
557             /* Load parameters for j particles */
558             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
559             vdwjidx0A        = 2*vdwtype[jnrA+0];
560             vdwjidx0B        = 2*vdwtype[jnrB+0];
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
567             {
568
569             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
570
571             /* Compute parameters for interactions between i and j atoms */
572             qq00             = _fjsp_mul_v2r8(iq0,jq0);
573             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
574                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
575
576             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
577                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
578
579             /* EWALD ELECTROSTATICS */
580
581             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
582             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
583             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
584             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
585             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
586
587             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
588                                          &ewtabF,&ewtabFn);
589             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
590             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
591
592             /* Analytical LJ-PME */
593             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
594             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
595             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
596             exponent         = gmx_simd_exp_d(-ewcljrsq);
597             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
598             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
599             /* f6A = 6 * C6grid * (1 - poly) */
600             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
601             /* f6B = C6grid * exponent * beta^6 */
602             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
603             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
604             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
605
606             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
607
608             fscal            = _fjsp_add_v2r8(felec,fvdw);
609
610             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
611
612             /* Update vectorial force */
613             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
614             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
615             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
616             
617             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
618
619             }
620
621             /* Inner loop uses 64 flops */
622         }
623
624         if(jidx<j_index_end)
625         {
626
627             jnrA             = jjnr[jidx];
628             j_coord_offsetA  = DIM*jnrA;
629
630             /* load j atom coordinates */
631             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
632                                               &jx0,&jy0,&jz0);
633
634             /* Calculate displacement vector */
635             dx00             = _fjsp_sub_v2r8(ix0,jx0);
636             dy00             = _fjsp_sub_v2r8(iy0,jy0);
637             dz00             = _fjsp_sub_v2r8(iz0,jz0);
638
639             /* Calculate squared distance and things based on it */
640             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
641
642             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
643
644             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
645
646             /* Load parameters for j particles */
647             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
648             vdwjidx0A        = 2*vdwtype[jnrA+0];
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
655             {
656
657             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq00             = _fjsp_mul_v2r8(iq0,jq0);
661             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
662
663             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
664
665             /* EWALD ELECTROSTATICS */
666
667             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
668             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
669             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
670             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
671             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
672
673             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
674             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
675             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
676
677             /* Analytical LJ-PME */
678             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
679             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
680             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
681             exponent         = gmx_simd_exp_d(-ewcljrsq);
682             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
683             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
684             /* f6A = 6 * C6grid * (1 - poly) */
685             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
686             /* f6B = C6grid * exponent * beta^6 */
687             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
688             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
689             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
690
691             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
692
693             fscal            = _fjsp_add_v2r8(felec,fvdw);
694
695             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
696
697             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
698
699             /* Update vectorial force */
700             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
701             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
702             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
703             
704             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
705
706             }
707
708             /* Inner loop uses 64 flops */
709         }
710
711         /* End of innermost loop */
712
713         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
714                                               f+i_coord_offset,fshift+i_shift_offset);
715
716         /* Increment number of inner iterations */
717         inneriter                  += j_index_end - j_index_start;
718
719         /* Outer loop uses 7 flops */
720     }
721
722     /* Increment number of outer iterations */
723     outeriter        += nri;
724
725     /* Update outer/inner flops */
726
727     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
728 }