23671683df9cca2865e285ca21bd846c5c6a7545
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LJEwald
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
93     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
94     _fjsp_v2r8           c6grid_00;
95     real                 *vdwgridparam;
96     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
98     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
99     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     _fjsp_v2r8       itab_tmp;
102     _fjsp_v2r8       dummy_mask,cutoff_mask;
103     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
104     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
105     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
106
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
125     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
126     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
127
128     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
131     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
136     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
139     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _fjsp_setzero_v2r8();
167         fiy0             = _fjsp_setzero_v2r8();
168         fiz0             = _fjsp_setzero_v2r8();
169
170         /* Load parameters for i particles */
171         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _fjsp_setzero_v2r8();
176         vvdwsum          = _fjsp_setzero_v2r8();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _fjsp_sub_v2r8(ix0,jx0);
194             dy00             = _fjsp_sub_v2r8(iy0,jy0);
195             dz00             = _fjsp_sub_v2r8(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
199
200             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
201
202             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
214             {
215
216             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _fjsp_mul_v2r8(iq0,jq0);
220             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222
223             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
224                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
225
226             /* EWALD ELECTROSTATICS */
227
228             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
229             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
230             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
231             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
232             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
233
234             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
235             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
236             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
237             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
238             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
239             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
240             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
241             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
242             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
243             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
244
245             /* Analytical LJ-PME */
246             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
247             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
248             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
249             exponent         = gmx_simd_exp_d(-ewcljrsq);
250             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
251             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
252             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
253             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
254             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
255             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
256                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
257             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
258             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
259
260             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
264             velecsum         = _fjsp_add_v2r8(velecsum,velec);
265             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
266             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
267
268             fscal            = _fjsp_add_v2r8(felec,fvdw);
269
270             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
271
272             /* Update vectorial force */
273             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
274             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
275             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
276             
277             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
278
279             }
280
281             /* Inner loop uses 79 flops */
282         }
283
284         if(jidx<j_index_end)
285         {
286
287             jnrA             = jjnr[jidx];
288             j_coord_offsetA  = DIM*jnrA;
289
290             /* load j atom coordinates */
291             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
292                                               &jx0,&jy0,&jz0);
293
294             /* Calculate displacement vector */
295             dx00             = _fjsp_sub_v2r8(ix0,jx0);
296             dy00             = _fjsp_sub_v2r8(iy0,jy0);
297             dz00             = _fjsp_sub_v2r8(iz0,jz0);
298
299             /* Calculate squared distance and things based on it */
300             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
301
302             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
303
304             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
305
306             /* Load parameters for j particles */
307             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
308             vdwjidx0A        = 2*vdwtype[jnrA+0];
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
315             {
316
317             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq00             = _fjsp_mul_v2r8(iq0,jq0);
321             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
322
323             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
328             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
329             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
330             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
331             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
332
333             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
334             ewtabD           = _fjsp_setzero_v2r8();
335             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
336             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
337             ewtabFn          = _fjsp_setzero_v2r8();
338             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
339             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
340             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
341             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_sub_v2r8(rinv00,sh_ewald),velec));
342             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
343
344             /* Analytical LJ-PME */
345             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
346             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
347             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
348             exponent         = gmx_simd_exp_d(-ewcljrsq);
349             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
350             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
351             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
352             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
353             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
354             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
355                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
356             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
357             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
358
359             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
363             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
364             velecsum         = _fjsp_add_v2r8(velecsum,velec);
365             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
366             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
367             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
368
369             fscal            = _fjsp_add_v2r8(felec,fvdw);
370
371             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
372
373             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
374
375             /* Update vectorial force */
376             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
377             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
378             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
379             
380             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
381
382             }
383
384             /* Inner loop uses 79 flops */
385         }
386
387         /* End of innermost loop */
388
389         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
390                                               f+i_coord_offset,fshift+i_shift_offset);
391
392         ggid                        = gid[iidx];
393         /* Update potential energies */
394         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
395         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
396
397         /* Increment number of inner iterations */
398         inneriter                  += j_index_end - j_index_start;
399
400         /* Outer loop uses 9 flops */
401     }
402
403     /* Increment number of outer iterations */
404     outeriter        += nri;
405
406     /* Update outer/inner flops */
407
408     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*79);
409 }
410 /*
411  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sparc64_hpc_ace_double
412  * Electrostatics interaction: Ewald
413  * VdW interaction:            LJEwald
414  * Geometry:                   Particle-Particle
415  * Calculate force/pot:        Force
416  */
417 void
418 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sparc64_hpc_ace_double
419                     (t_nblist                    * gmx_restrict       nlist,
420                      rvec                        * gmx_restrict          xx,
421                      rvec                        * gmx_restrict          ff,
422                      t_forcerec                  * gmx_restrict          fr,
423                      t_mdatoms                   * gmx_restrict     mdatoms,
424                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
425                      t_nrnb                      * gmx_restrict        nrnb)
426 {
427     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
428      * just 0 for non-waters.
429      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
430      * jnr indices corresponding to data put in the four positions in the SIMD register.
431      */
432     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
433     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
434     int              jnrA,jnrB;
435     int              j_coord_offsetA,j_coord_offsetB;
436     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
437     real             rcutoff_scalar;
438     real             *shiftvec,*fshift,*x,*f;
439     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
440     int              vdwioffset0;
441     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
442     int              vdwjidx0A,vdwjidx0B;
443     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
444     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
445     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
446     real             *charge;
447     int              nvdwtype;
448     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
449     int              *vdwtype;
450     real             *vdwparam;
451     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
452     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
453     _fjsp_v2r8           c6grid_00;
454     real                 *vdwgridparam;
455     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
456     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
457     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
458     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
459     real             *ewtab;
460     _fjsp_v2r8       itab_tmp;
461     _fjsp_v2r8       dummy_mask,cutoff_mask;
462     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
463     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
464     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
465
466     x                = xx[0];
467     f                = ff[0];
468
469     nri              = nlist->nri;
470     iinr             = nlist->iinr;
471     jindex           = nlist->jindex;
472     jjnr             = nlist->jjnr;
473     shiftidx         = nlist->shift;
474     gid              = nlist->gid;
475     shiftvec         = fr->shift_vec[0];
476     fshift           = fr->fshift[0];
477     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
478     charge           = mdatoms->chargeA;
479     nvdwtype         = fr->ntype;
480     vdwparam         = fr->nbfp;
481     vdwtype          = mdatoms->typeA;
482     vdwgridparam     = fr->ljpme_c6grid;
483     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
484     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
485     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
486
487     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
488     ewtab            = fr->ic->tabq_coul_F;
489     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
490     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
491
492     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
493     rcutoff_scalar   = fr->rcoulomb;
494     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
495     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
496
497     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
498     rvdw             = gmx_fjsp_set1_v2r8(fr->rvdw);
499
500     /* Avoid stupid compiler warnings */
501     jnrA = jnrB = 0;
502     j_coord_offsetA = 0;
503     j_coord_offsetB = 0;
504
505     outeriter        = 0;
506     inneriter        = 0;
507
508     /* Start outer loop over neighborlists */
509     for(iidx=0; iidx<nri; iidx++)
510     {
511         /* Load shift vector for this list */
512         i_shift_offset   = DIM*shiftidx[iidx];
513
514         /* Load limits for loop over neighbors */
515         j_index_start    = jindex[iidx];
516         j_index_end      = jindex[iidx+1];
517
518         /* Get outer coordinate index */
519         inr              = iinr[iidx];
520         i_coord_offset   = DIM*inr;
521
522         /* Load i particle coords and add shift vector */
523         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
524
525         fix0             = _fjsp_setzero_v2r8();
526         fiy0             = _fjsp_setzero_v2r8();
527         fiz0             = _fjsp_setzero_v2r8();
528
529         /* Load parameters for i particles */
530         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
531         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
532
533         /* Start inner kernel loop */
534         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
535         {
536
537             /* Get j neighbor index, and coordinate index */
538             jnrA             = jjnr[jidx];
539             jnrB             = jjnr[jidx+1];
540             j_coord_offsetA  = DIM*jnrA;
541             j_coord_offsetB  = DIM*jnrB;
542
543             /* load j atom coordinates */
544             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
545                                               &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _fjsp_sub_v2r8(ix0,jx0);
549             dy00             = _fjsp_sub_v2r8(iy0,jy0);
550             dz00             = _fjsp_sub_v2r8(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
554
555             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
556
557             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
558
559             /* Load parameters for j particles */
560             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
561             vdwjidx0A        = 2*vdwtype[jnrA+0];
562             vdwjidx0B        = 2*vdwtype[jnrB+0];
563
564             /**************************
565              * CALCULATE INTERACTIONS *
566              **************************/
567
568             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
569             {
570
571             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq00             = _fjsp_mul_v2r8(iq0,jq0);
575             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
576                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
577
578             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
579                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
580
581             /* EWALD ELECTROSTATICS */
582
583             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
584             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
585             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
586             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
587             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
588
589             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
590                                          &ewtabF,&ewtabFn);
591             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
592             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
593
594             /* Analytical LJ-PME */
595             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
596             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
597             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
598             exponent         = gmx_simd_exp_d(-ewcljrsq);
599             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
600             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
601             /* f6A = 6 * C6grid * (1 - poly) */
602             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
603             /* f6B = C6grid * exponent * beta^6 */
604             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
605             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
606             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
607
608             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
609
610             fscal            = _fjsp_add_v2r8(felec,fvdw);
611
612             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
613
614             /* Update vectorial force */
615             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
616             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
617             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
618             
619             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
620
621             }
622
623             /* Inner loop uses 64 flops */
624         }
625
626         if(jidx<j_index_end)
627         {
628
629             jnrA             = jjnr[jidx];
630             j_coord_offsetA  = DIM*jnrA;
631
632             /* load j atom coordinates */
633             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
634                                               &jx0,&jy0,&jz0);
635
636             /* Calculate displacement vector */
637             dx00             = _fjsp_sub_v2r8(ix0,jx0);
638             dy00             = _fjsp_sub_v2r8(iy0,jy0);
639             dz00             = _fjsp_sub_v2r8(iz0,jz0);
640
641             /* Calculate squared distance and things based on it */
642             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
643
644             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
645
646             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
647
648             /* Load parameters for j particles */
649             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
650             vdwjidx0A        = 2*vdwtype[jnrA+0];
651
652             /**************************
653              * CALCULATE INTERACTIONS *
654              **************************/
655
656             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
657             {
658
659             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
660
661             /* Compute parameters for interactions between i and j atoms */
662             qq00             = _fjsp_mul_v2r8(iq0,jq0);
663             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
664
665             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
666
667             /* EWALD ELECTROSTATICS */
668
669             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
670             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
671             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
672             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
673             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
674
675             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
676             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
677             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
678
679             /* Analytical LJ-PME */
680             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
681             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
682             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
683             exponent         = gmx_simd_exp_d(-ewcljrsq);
684             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
685             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
686             /* f6A = 6 * C6grid * (1 - poly) */
687             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
688             /* f6B = C6grid * exponent * beta^6 */
689             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
690             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
691             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
692
693             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
694
695             fscal            = _fjsp_add_v2r8(felec,fvdw);
696
697             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
698
699             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
700
701             /* Update vectorial force */
702             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
703             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
704             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
705             
706             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
707
708             }
709
710             /* Inner loop uses 64 flops */
711         }
712
713         /* End of innermost loop */
714
715         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
716                                               f+i_coord_offset,fshift+i_shift_offset);
717
718         /* Increment number of inner iterations */
719         inneriter                  += j_index_end - j_index_start;
720
721         /* Outer loop uses 7 flops */
722     }
723
724     /* Increment number of outer iterations */
725     outeriter        += nri;
726
727     /* Update outer/inner flops */
728
729     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
730 }