Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     int              vfitab;
90     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
91     real             *vftab;
92
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = fr->epsfac;
105     charge           = mdatoms->chargeA;
106     krf              = fr->ic->k_rf;
107     krf2             = krf*2.0;
108     crf              = fr->ic->c_rf;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = kernel_data->table_vdw->scale;
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = facel*charge[inr+0];
119     iq1              = facel*charge[inr+1];
120     iq2              = facel*charge[inr+2];
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131         shX              = shiftvec[i_shift_offset+XX];
132         shY              = shiftvec[i_shift_offset+YY];
133         shZ              = shiftvec[i_shift_offset+ZZ];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         ix0              = shX + x[i_coord_offset+DIM*0+XX];
145         iy0              = shY + x[i_coord_offset+DIM*0+YY];
146         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
147         ix1              = shX + x[i_coord_offset+DIM*1+XX];
148         iy1              = shY + x[i_coord_offset+DIM*1+YY];
149         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
150         ix2              = shX + x[i_coord_offset+DIM*2+XX];
151         iy2              = shY + x[i_coord_offset+DIM*2+YY];
152         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
153
154         fix0             = 0.0;
155         fiy0             = 0.0;
156         fiz0             = 0.0;
157         fix1             = 0.0;
158         fiy1             = 0.0;
159         fiz1             = 0.0;
160         fix2             = 0.0;
161         fiy2             = 0.0;
162         fiz2             = 0.0;
163
164         /* Reset potential sums */
165         velecsum         = 0.0;
166         vvdwsum          = 0.0;
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end; jidx++)
170         {
171             /* Get j neighbor index, and coordinate index */
172             jnr              = jjnr[jidx];
173             j_coord_offset   = DIM*jnr;
174
175             /* load j atom coordinates */
176             jx0              = x[j_coord_offset+DIM*0+XX];
177             jy0              = x[j_coord_offset+DIM*0+YY];
178             jz0              = x[j_coord_offset+DIM*0+ZZ];
179
180             /* Calculate displacement vector */
181             dx00             = ix0 - jx0;
182             dy00             = iy0 - jy0;
183             dz00             = iz0 - jz0;
184             dx10             = ix1 - jx0;
185             dy10             = iy1 - jy0;
186             dz10             = iz1 - jz0;
187             dx20             = ix2 - jx0;
188             dy20             = iy2 - jy0;
189             dz20             = iz2 - jz0;
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
193             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
194             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
195
196             rinv00           = gmx_invsqrt(rsq00);
197             rinv10           = gmx_invsqrt(rsq10);
198             rinv20           = gmx_invsqrt(rsq20);
199
200             rinvsq00         = rinv00*rinv00;
201             rinvsq10         = rinv10*rinv10;
202             rinvsq20         = rinv20*rinv20;
203
204             /* Load parameters for j particles */
205             jq0              = charge[jnr+0];
206             vdwjidx0         = 2*vdwtype[jnr+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             r00              = rsq00*rinv00;
213
214             qq00             = iq0*jq0;
215             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
216             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
217
218             /* Calculate table index by multiplying r with table scale and truncate to integer */
219             rt               = r00*vftabscale;
220             vfitab           = rt;
221             vfeps            = rt-vfitab;
222             vfitab           = 2*4*vfitab;
223
224             /* REACTION-FIELD ELECTROSTATICS */
225             velec            = qq00*(rinv00+krf*rsq00-crf);
226             felec            = qq00*(rinv00*rinvsq00-krf2);
227
228             /* CUBIC SPLINE TABLE DISPERSION */
229             vfitab          += 0;
230             Y                = vftab[vfitab];
231             F                = vftab[vfitab+1];
232             Geps             = vfeps*vftab[vfitab+2];
233             Heps2            = vfeps*vfeps*vftab[vfitab+3];
234             Fp               = F+Geps+Heps2;
235             VV               = Y+vfeps*Fp;
236             vvdw6            = c6_00*VV;
237             FF               = Fp+Geps+2.0*Heps2;
238             fvdw6            = c6_00*FF;
239
240             /* CUBIC SPLINE TABLE REPULSION */
241             Y                = vftab[vfitab+4];
242             F                = vftab[vfitab+5];
243             Geps             = vfeps*vftab[vfitab+6];
244             Heps2            = vfeps*vfeps*vftab[vfitab+7];
245             Fp               = F+Geps+Heps2;
246             VV               = Y+vfeps*Fp;
247             vvdw12           = c12_00*VV;
248             FF               = Fp+Geps+2.0*Heps2;
249             fvdw12           = c12_00*FF;
250             vvdw             = vvdw12+vvdw6;
251             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
252
253             /* Update potential sums from outer loop */
254             velecsum        += velec;
255             vvdwsum         += vvdw;
256
257             fscal            = felec+fvdw;
258
259             /* Calculate temporary vectorial force */
260             tx               = fscal*dx00;
261             ty               = fscal*dy00;
262             tz               = fscal*dz00;
263
264             /* Update vectorial force */
265             fix0            += tx;
266             fiy0            += ty;
267             fiz0            += tz;
268             f[j_coord_offset+DIM*0+XX] -= tx;
269             f[j_coord_offset+DIM*0+YY] -= ty;
270             f[j_coord_offset+DIM*0+ZZ] -= tz;
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             qq10             = iq1*jq0;
277
278             /* REACTION-FIELD ELECTROSTATICS */
279             velec            = qq10*(rinv10+krf*rsq10-crf);
280             felec            = qq10*(rinv10*rinvsq10-krf2);
281
282             /* Update potential sums from outer loop */
283             velecsum        += velec;
284
285             fscal            = felec;
286
287             /* Calculate temporary vectorial force */
288             tx               = fscal*dx10;
289             ty               = fscal*dy10;
290             tz               = fscal*dz10;
291
292             /* Update vectorial force */
293             fix1            += tx;
294             fiy1            += ty;
295             fiz1            += tz;
296             f[j_coord_offset+DIM*0+XX] -= tx;
297             f[j_coord_offset+DIM*0+YY] -= ty;
298             f[j_coord_offset+DIM*0+ZZ] -= tz;
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             qq20             = iq2*jq0;
305
306             /* REACTION-FIELD ELECTROSTATICS */
307             velec            = qq20*(rinv20+krf*rsq20-crf);
308             felec            = qq20*(rinv20*rinvsq20-krf2);
309
310             /* Update potential sums from outer loop */
311             velecsum        += velec;
312
313             fscal            = felec;
314
315             /* Calculate temporary vectorial force */
316             tx               = fscal*dx20;
317             ty               = fscal*dy20;
318             tz               = fscal*dz20;
319
320             /* Update vectorial force */
321             fix2            += tx;
322             fiy2            += ty;
323             fiz2            += tz;
324             f[j_coord_offset+DIM*0+XX] -= tx;
325             f[j_coord_offset+DIM*0+YY] -= ty;
326             f[j_coord_offset+DIM*0+ZZ] -= tz;
327
328             /* Inner loop uses 130 flops */
329         }
330         /* End of innermost loop */
331
332         tx = ty = tz = 0;
333         f[i_coord_offset+DIM*0+XX] += fix0;
334         f[i_coord_offset+DIM*0+YY] += fiy0;
335         f[i_coord_offset+DIM*0+ZZ] += fiz0;
336         tx                         += fix0;
337         ty                         += fiy0;
338         tz                         += fiz0;
339         f[i_coord_offset+DIM*1+XX] += fix1;
340         f[i_coord_offset+DIM*1+YY] += fiy1;
341         f[i_coord_offset+DIM*1+ZZ] += fiz1;
342         tx                         += fix1;
343         ty                         += fiy1;
344         tz                         += fiz1;
345         f[i_coord_offset+DIM*2+XX] += fix2;
346         f[i_coord_offset+DIM*2+YY] += fiy2;
347         f[i_coord_offset+DIM*2+ZZ] += fiz2;
348         tx                         += fix2;
349         ty                         += fiy2;
350         tz                         += fiz2;
351         fshift[i_shift_offset+XX]  += tx;
352         fshift[i_shift_offset+YY]  += ty;
353         fshift[i_shift_offset+ZZ]  += tz;
354
355         ggid                        = gid[iidx];
356         /* Update potential energies */
357         kernel_data->energygrp_elec[ggid] += velecsum;
358         kernel_data->energygrp_vdw[ggid] += vvdwsum;
359
360         /* Increment number of inner iterations */
361         inneriter                  += j_index_end - j_index_start;
362
363         /* Outer loop uses 32 flops */
364     }
365
366     /* Increment number of outer iterations */
367     outeriter        += nri;
368
369     /* Update outer/inner flops */
370
371     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*130);
372 }
373 /*
374  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_c
375  * Electrostatics interaction: ReactionField
376  * VdW interaction:            CubicSplineTable
377  * Geometry:                   Water3-Particle
378  * Calculate force/pot:        Force
379  */
380 void
381 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_c
382                     (t_nblist                    * gmx_restrict       nlist,
383                      rvec                        * gmx_restrict          xx,
384                      rvec                        * gmx_restrict          ff,
385                      t_forcerec                  * gmx_restrict          fr,
386                      t_mdatoms                   * gmx_restrict     mdatoms,
387                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
388                      t_nrnb                      * gmx_restrict        nrnb)
389 {
390     int              i_shift_offset,i_coord_offset,j_coord_offset;
391     int              j_index_start,j_index_end;
392     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
393     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
394     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
395     real             *shiftvec,*fshift,*x,*f;
396     int              vdwioffset0;
397     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
398     int              vdwioffset1;
399     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
400     int              vdwioffset2;
401     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
402     int              vdwjidx0;
403     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
404     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
405     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
406     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
407     real             velec,felec,velecsum,facel,crf,krf,krf2;
408     real             *charge;
409     int              nvdwtype;
410     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
411     int              *vdwtype;
412     real             *vdwparam;
413     int              vfitab;
414     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
415     real             *vftab;
416
417     x                = xx[0];
418     f                = ff[0];
419
420     nri              = nlist->nri;
421     iinr             = nlist->iinr;
422     jindex           = nlist->jindex;
423     jjnr             = nlist->jjnr;
424     shiftidx         = nlist->shift;
425     gid              = nlist->gid;
426     shiftvec         = fr->shift_vec[0];
427     fshift           = fr->fshift[0];
428     facel            = fr->epsfac;
429     charge           = mdatoms->chargeA;
430     krf              = fr->ic->k_rf;
431     krf2             = krf*2.0;
432     crf              = fr->ic->c_rf;
433     nvdwtype         = fr->ntype;
434     vdwparam         = fr->nbfp;
435     vdwtype          = mdatoms->typeA;
436
437     vftab            = kernel_data->table_vdw->data;
438     vftabscale       = kernel_data->table_vdw->scale;
439
440     /* Setup water-specific parameters */
441     inr              = nlist->iinr[0];
442     iq0              = facel*charge[inr+0];
443     iq1              = facel*charge[inr+1];
444     iq2              = facel*charge[inr+2];
445     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
446
447     outeriter        = 0;
448     inneriter        = 0;
449
450     /* Start outer loop over neighborlists */
451     for(iidx=0; iidx<nri; iidx++)
452     {
453         /* Load shift vector for this list */
454         i_shift_offset   = DIM*shiftidx[iidx];
455         shX              = shiftvec[i_shift_offset+XX];
456         shY              = shiftvec[i_shift_offset+YY];
457         shZ              = shiftvec[i_shift_offset+ZZ];
458
459         /* Load limits for loop over neighbors */
460         j_index_start    = jindex[iidx];
461         j_index_end      = jindex[iidx+1];
462
463         /* Get outer coordinate index */
464         inr              = iinr[iidx];
465         i_coord_offset   = DIM*inr;
466
467         /* Load i particle coords and add shift vector */
468         ix0              = shX + x[i_coord_offset+DIM*0+XX];
469         iy0              = shY + x[i_coord_offset+DIM*0+YY];
470         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
471         ix1              = shX + x[i_coord_offset+DIM*1+XX];
472         iy1              = shY + x[i_coord_offset+DIM*1+YY];
473         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
474         ix2              = shX + x[i_coord_offset+DIM*2+XX];
475         iy2              = shY + x[i_coord_offset+DIM*2+YY];
476         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
477
478         fix0             = 0.0;
479         fiy0             = 0.0;
480         fiz0             = 0.0;
481         fix1             = 0.0;
482         fiy1             = 0.0;
483         fiz1             = 0.0;
484         fix2             = 0.0;
485         fiy2             = 0.0;
486         fiz2             = 0.0;
487
488         /* Start inner kernel loop */
489         for(jidx=j_index_start; jidx<j_index_end; jidx++)
490         {
491             /* Get j neighbor index, and coordinate index */
492             jnr              = jjnr[jidx];
493             j_coord_offset   = DIM*jnr;
494
495             /* load j atom coordinates */
496             jx0              = x[j_coord_offset+DIM*0+XX];
497             jy0              = x[j_coord_offset+DIM*0+YY];
498             jz0              = x[j_coord_offset+DIM*0+ZZ];
499
500             /* Calculate displacement vector */
501             dx00             = ix0 - jx0;
502             dy00             = iy0 - jy0;
503             dz00             = iz0 - jz0;
504             dx10             = ix1 - jx0;
505             dy10             = iy1 - jy0;
506             dz10             = iz1 - jz0;
507             dx20             = ix2 - jx0;
508             dy20             = iy2 - jy0;
509             dz20             = iz2 - jz0;
510
511             /* Calculate squared distance and things based on it */
512             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
513             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
514             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
515
516             rinv00           = gmx_invsqrt(rsq00);
517             rinv10           = gmx_invsqrt(rsq10);
518             rinv20           = gmx_invsqrt(rsq20);
519
520             rinvsq00         = rinv00*rinv00;
521             rinvsq10         = rinv10*rinv10;
522             rinvsq20         = rinv20*rinv20;
523
524             /* Load parameters for j particles */
525             jq0              = charge[jnr+0];
526             vdwjidx0         = 2*vdwtype[jnr+0];
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r00              = rsq00*rinv00;
533
534             qq00             = iq0*jq0;
535             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
536             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
537
538             /* Calculate table index by multiplying r with table scale and truncate to integer */
539             rt               = r00*vftabscale;
540             vfitab           = rt;
541             vfeps            = rt-vfitab;
542             vfitab           = 2*4*vfitab;
543
544             /* REACTION-FIELD ELECTROSTATICS */
545             felec            = qq00*(rinv00*rinvsq00-krf2);
546
547             /* CUBIC SPLINE TABLE DISPERSION */
548             vfitab          += 0;
549             F                = vftab[vfitab+1];
550             Geps             = vfeps*vftab[vfitab+2];
551             Heps2            = vfeps*vfeps*vftab[vfitab+3];
552             Fp               = F+Geps+Heps2;
553             FF               = Fp+Geps+2.0*Heps2;
554             fvdw6            = c6_00*FF;
555
556             /* CUBIC SPLINE TABLE REPULSION */
557             F                = vftab[vfitab+5];
558             Geps             = vfeps*vftab[vfitab+6];
559             Heps2            = vfeps*vfeps*vftab[vfitab+7];
560             Fp               = F+Geps+Heps2;
561             FF               = Fp+Geps+2.0*Heps2;
562             fvdw12           = c12_00*FF;
563             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
564
565             fscal            = felec+fvdw;
566
567             /* Calculate temporary vectorial force */
568             tx               = fscal*dx00;
569             ty               = fscal*dy00;
570             tz               = fscal*dz00;
571
572             /* Update vectorial force */
573             fix0            += tx;
574             fiy0            += ty;
575             fiz0            += tz;
576             f[j_coord_offset+DIM*0+XX] -= tx;
577             f[j_coord_offset+DIM*0+YY] -= ty;
578             f[j_coord_offset+DIM*0+ZZ] -= tz;
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             qq10             = iq1*jq0;
585
586             /* REACTION-FIELD ELECTROSTATICS */
587             felec            = qq10*(rinv10*rinvsq10-krf2);
588
589             fscal            = felec;
590
591             /* Calculate temporary vectorial force */
592             tx               = fscal*dx10;
593             ty               = fscal*dy10;
594             tz               = fscal*dz10;
595
596             /* Update vectorial force */
597             fix1            += tx;
598             fiy1            += ty;
599             fiz1            += tz;
600             f[j_coord_offset+DIM*0+XX] -= tx;
601             f[j_coord_offset+DIM*0+YY] -= ty;
602             f[j_coord_offset+DIM*0+ZZ] -= tz;
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             qq20             = iq2*jq0;
609
610             /* REACTION-FIELD ELECTROSTATICS */
611             felec            = qq20*(rinv20*rinvsq20-krf2);
612
613             fscal            = felec;
614
615             /* Calculate temporary vectorial force */
616             tx               = fscal*dx20;
617             ty               = fscal*dy20;
618             tz               = fscal*dz20;
619
620             /* Update vectorial force */
621             fix2            += tx;
622             fiy2            += ty;
623             fiz2            += tz;
624             f[j_coord_offset+DIM*0+XX] -= tx;
625             f[j_coord_offset+DIM*0+YY] -= ty;
626             f[j_coord_offset+DIM*0+ZZ] -= tz;
627
628             /* Inner loop uses 107 flops */
629         }
630         /* End of innermost loop */
631
632         tx = ty = tz = 0;
633         f[i_coord_offset+DIM*0+XX] += fix0;
634         f[i_coord_offset+DIM*0+YY] += fiy0;
635         f[i_coord_offset+DIM*0+ZZ] += fiz0;
636         tx                         += fix0;
637         ty                         += fiy0;
638         tz                         += fiz0;
639         f[i_coord_offset+DIM*1+XX] += fix1;
640         f[i_coord_offset+DIM*1+YY] += fiy1;
641         f[i_coord_offset+DIM*1+ZZ] += fiz1;
642         tx                         += fix1;
643         ty                         += fiy1;
644         tz                         += fiz1;
645         f[i_coord_offset+DIM*2+XX] += fix2;
646         f[i_coord_offset+DIM*2+YY] += fiy2;
647         f[i_coord_offset+DIM*2+ZZ] += fiz2;
648         tx                         += fix2;
649         ty                         += fiy2;
650         tz                         += fiz2;
651         fshift[i_shift_offset+XX]  += tx;
652         fshift[i_shift_offset+YY]  += ty;
653         fshift[i_shift_offset+ZZ]  += tz;
654
655         /* Increment number of inner iterations */
656         inneriter                  += j_index_end - j_index_start;
657
658         /* Outer loop uses 30 flops */
659     }
660
661     /* Increment number of outer iterations */
662     outeriter        += nri;
663
664     /* Update outer/inner flops */
665
666     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*107);
667 }