Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     int              vfitab;
84     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
85     real             *vftab;
86
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = fr->epsfac;
99     charge           = mdatoms->chargeA;
100     krf              = fr->ic->k_rf;
101     krf2             = krf*2.0;
102     crf              = fr->ic->c_rf;
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = kernel_data->table_vdw->scale;
109
110     outeriter        = 0;
111     inneriter        = 0;
112
113     /* Start outer loop over neighborlists */
114     for(iidx=0; iidx<nri; iidx++)
115     {
116         /* Load shift vector for this list */
117         i_shift_offset   = DIM*shiftidx[iidx];
118         shX              = shiftvec[i_shift_offset+XX];
119         shY              = shiftvec[i_shift_offset+YY];
120         shZ              = shiftvec[i_shift_offset+ZZ];
121
122         /* Load limits for loop over neighbors */
123         j_index_start    = jindex[iidx];
124         j_index_end      = jindex[iidx+1];
125
126         /* Get outer coordinate index */
127         inr              = iinr[iidx];
128         i_coord_offset   = DIM*inr;
129
130         /* Load i particle coords and add shift vector */
131         ix0              = shX + x[i_coord_offset+DIM*0+XX];
132         iy0              = shY + x[i_coord_offset+DIM*0+YY];
133         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
134
135         fix0             = 0.0;
136         fiy0             = 0.0;
137         fiz0             = 0.0;
138
139         /* Load parameters for i particles */
140         iq0              = facel*charge[inr+0];
141         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143         /* Reset potential sums */
144         velecsum         = 0.0;
145         vvdwsum          = 0.0;
146
147         /* Start inner kernel loop */
148         for(jidx=j_index_start; jidx<j_index_end; jidx++)
149         {
150             /* Get j neighbor index, and coordinate index */
151             jnr              = jjnr[jidx];
152             j_coord_offset   = DIM*jnr;
153
154             /* load j atom coordinates */
155             jx0              = x[j_coord_offset+DIM*0+XX];
156             jy0              = x[j_coord_offset+DIM*0+YY];
157             jz0              = x[j_coord_offset+DIM*0+ZZ];
158
159             /* Calculate displacement vector */
160             dx00             = ix0 - jx0;
161             dy00             = iy0 - jy0;
162             dz00             = iz0 - jz0;
163
164             /* Calculate squared distance and things based on it */
165             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
166
167             rinv00           = gmx_invsqrt(rsq00);
168
169             rinvsq00         = rinv00*rinv00;
170
171             /* Load parameters for j particles */
172             jq0              = charge[jnr+0];
173             vdwjidx0         = 2*vdwtype[jnr+0];
174
175             /**************************
176              * CALCULATE INTERACTIONS *
177              **************************/
178
179             r00              = rsq00*rinv00;
180
181             qq00             = iq0*jq0;
182             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
183             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
184
185             /* Calculate table index by multiplying r with table scale and truncate to integer */
186             rt               = r00*vftabscale;
187             vfitab           = rt;
188             vfeps            = rt-vfitab;
189             vfitab           = 2*4*vfitab;
190
191             /* REACTION-FIELD ELECTROSTATICS */
192             velec            = qq00*(rinv00+krf*rsq00-crf);
193             felec            = qq00*(rinv00*rinvsq00-krf2);
194
195             /* CUBIC SPLINE TABLE DISPERSION */
196             vfitab          += 0;
197             Y                = vftab[vfitab];
198             F                = vftab[vfitab+1];
199             Geps             = vfeps*vftab[vfitab+2];
200             Heps2            = vfeps*vfeps*vftab[vfitab+3];
201             Fp               = F+Geps+Heps2;
202             VV               = Y+vfeps*Fp;
203             vvdw6            = c6_00*VV;
204             FF               = Fp+Geps+2.0*Heps2;
205             fvdw6            = c6_00*FF;
206
207             /* CUBIC SPLINE TABLE REPULSION */
208             Y                = vftab[vfitab+4];
209             F                = vftab[vfitab+5];
210             Geps             = vfeps*vftab[vfitab+6];
211             Heps2            = vfeps*vfeps*vftab[vfitab+7];
212             Fp               = F+Geps+Heps2;
213             VV               = Y+vfeps*Fp;
214             vvdw12           = c12_00*VV;
215             FF               = Fp+Geps+2.0*Heps2;
216             fvdw12           = c12_00*FF;
217             vvdw             = vvdw12+vvdw6;
218             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
219
220             /* Update potential sums from outer loop */
221             velecsum        += velec;
222             vvdwsum         += vvdw;
223
224             fscal            = felec+fvdw;
225
226             /* Calculate temporary vectorial force */
227             tx               = fscal*dx00;
228             ty               = fscal*dy00;
229             tz               = fscal*dz00;
230
231             /* Update vectorial force */
232             fix0            += tx;
233             fiy0            += ty;
234             fiz0            += tz;
235             f[j_coord_offset+DIM*0+XX] -= tx;
236             f[j_coord_offset+DIM*0+YY] -= ty;
237             f[j_coord_offset+DIM*0+ZZ] -= tz;
238
239             /* Inner loop uses 66 flops */
240         }
241         /* End of innermost loop */
242
243         tx = ty = tz = 0;
244         f[i_coord_offset+DIM*0+XX] += fix0;
245         f[i_coord_offset+DIM*0+YY] += fiy0;
246         f[i_coord_offset+DIM*0+ZZ] += fiz0;
247         tx                         += fix0;
248         ty                         += fiy0;
249         tz                         += fiz0;
250         fshift[i_shift_offset+XX]  += tx;
251         fshift[i_shift_offset+YY]  += ty;
252         fshift[i_shift_offset+ZZ]  += tz;
253
254         ggid                        = gid[iidx];
255         /* Update potential energies */
256         kernel_data->energygrp_elec[ggid] += velecsum;
257         kernel_data->energygrp_vdw[ggid] += vvdwsum;
258
259         /* Increment number of inner iterations */
260         inneriter                  += j_index_end - j_index_start;
261
262         /* Outer loop uses 15 flops */
263     }
264
265     /* Increment number of outer iterations */
266     outeriter        += nri;
267
268     /* Update outer/inner flops */
269
270     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*66);
271 }
272 /*
273  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_c
274  * Electrostatics interaction: ReactionField
275  * VdW interaction:            CubicSplineTable
276  * Geometry:                   Particle-Particle
277  * Calculate force/pot:        Force
278  */
279 void
280 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_c
281                     (t_nblist                    * gmx_restrict       nlist,
282                      rvec                        * gmx_restrict          xx,
283                      rvec                        * gmx_restrict          ff,
284                      t_forcerec                  * gmx_restrict          fr,
285                      t_mdatoms                   * gmx_restrict     mdatoms,
286                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
287                      t_nrnb                      * gmx_restrict        nrnb)
288 {
289     int              i_shift_offset,i_coord_offset,j_coord_offset;
290     int              j_index_start,j_index_end;
291     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
292     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
293     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
294     real             *shiftvec,*fshift,*x,*f;
295     int              vdwioffset0;
296     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
297     int              vdwjidx0;
298     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
299     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
300     real             velec,felec,velecsum,facel,crf,krf,krf2;
301     real             *charge;
302     int              nvdwtype;
303     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
304     int              *vdwtype;
305     real             *vdwparam;
306     int              vfitab;
307     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
308     real             *vftab;
309
310     x                = xx[0];
311     f                = ff[0];
312
313     nri              = nlist->nri;
314     iinr             = nlist->iinr;
315     jindex           = nlist->jindex;
316     jjnr             = nlist->jjnr;
317     shiftidx         = nlist->shift;
318     gid              = nlist->gid;
319     shiftvec         = fr->shift_vec[0];
320     fshift           = fr->fshift[0];
321     facel            = fr->epsfac;
322     charge           = mdatoms->chargeA;
323     krf              = fr->ic->k_rf;
324     krf2             = krf*2.0;
325     crf              = fr->ic->c_rf;
326     nvdwtype         = fr->ntype;
327     vdwparam         = fr->nbfp;
328     vdwtype          = mdatoms->typeA;
329
330     vftab            = kernel_data->table_vdw->data;
331     vftabscale       = kernel_data->table_vdw->scale;
332
333     outeriter        = 0;
334     inneriter        = 0;
335
336     /* Start outer loop over neighborlists */
337     for(iidx=0; iidx<nri; iidx++)
338     {
339         /* Load shift vector for this list */
340         i_shift_offset   = DIM*shiftidx[iidx];
341         shX              = shiftvec[i_shift_offset+XX];
342         shY              = shiftvec[i_shift_offset+YY];
343         shZ              = shiftvec[i_shift_offset+ZZ];
344
345         /* Load limits for loop over neighbors */
346         j_index_start    = jindex[iidx];
347         j_index_end      = jindex[iidx+1];
348
349         /* Get outer coordinate index */
350         inr              = iinr[iidx];
351         i_coord_offset   = DIM*inr;
352
353         /* Load i particle coords and add shift vector */
354         ix0              = shX + x[i_coord_offset+DIM*0+XX];
355         iy0              = shY + x[i_coord_offset+DIM*0+YY];
356         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
357
358         fix0             = 0.0;
359         fiy0             = 0.0;
360         fiz0             = 0.0;
361
362         /* Load parameters for i particles */
363         iq0              = facel*charge[inr+0];
364         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
365
366         /* Start inner kernel loop */
367         for(jidx=j_index_start; jidx<j_index_end; jidx++)
368         {
369             /* Get j neighbor index, and coordinate index */
370             jnr              = jjnr[jidx];
371             j_coord_offset   = DIM*jnr;
372
373             /* load j atom coordinates */
374             jx0              = x[j_coord_offset+DIM*0+XX];
375             jy0              = x[j_coord_offset+DIM*0+YY];
376             jz0              = x[j_coord_offset+DIM*0+ZZ];
377
378             /* Calculate displacement vector */
379             dx00             = ix0 - jx0;
380             dy00             = iy0 - jy0;
381             dz00             = iz0 - jz0;
382
383             /* Calculate squared distance and things based on it */
384             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
385
386             rinv00           = gmx_invsqrt(rsq00);
387
388             rinvsq00         = rinv00*rinv00;
389
390             /* Load parameters for j particles */
391             jq0              = charge[jnr+0];
392             vdwjidx0         = 2*vdwtype[jnr+0];
393
394             /**************************
395              * CALCULATE INTERACTIONS *
396              **************************/
397
398             r00              = rsq00*rinv00;
399
400             qq00             = iq0*jq0;
401             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
402             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
403
404             /* Calculate table index by multiplying r with table scale and truncate to integer */
405             rt               = r00*vftabscale;
406             vfitab           = rt;
407             vfeps            = rt-vfitab;
408             vfitab           = 2*4*vfitab;
409
410             /* REACTION-FIELD ELECTROSTATICS */
411             felec            = qq00*(rinv00*rinvsq00-krf2);
412
413             /* CUBIC SPLINE TABLE DISPERSION */
414             vfitab          += 0;
415             F                = vftab[vfitab+1];
416             Geps             = vfeps*vftab[vfitab+2];
417             Heps2            = vfeps*vfeps*vftab[vfitab+3];
418             Fp               = F+Geps+Heps2;
419             FF               = Fp+Geps+2.0*Heps2;
420             fvdw6            = c6_00*FF;
421
422             /* CUBIC SPLINE TABLE REPULSION */
423             F                = vftab[vfitab+5];
424             Geps             = vfeps*vftab[vfitab+6];
425             Heps2            = vfeps*vfeps*vftab[vfitab+7];
426             Fp               = F+Geps+Heps2;
427             FF               = Fp+Geps+2.0*Heps2;
428             fvdw12           = c12_00*FF;
429             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
430
431             fscal            = felec+fvdw;
432
433             /* Calculate temporary vectorial force */
434             tx               = fscal*dx00;
435             ty               = fscal*dy00;
436             tz               = fscal*dz00;
437
438             /* Update vectorial force */
439             fix0            += tx;
440             fiy0            += ty;
441             fiz0            += tz;
442             f[j_coord_offset+DIM*0+XX] -= tx;
443             f[j_coord_offset+DIM*0+YY] -= ty;
444             f[j_coord_offset+DIM*0+ZZ] -= tz;
445
446             /* Inner loop uses 53 flops */
447         }
448         /* End of innermost loop */
449
450         tx = ty = tz = 0;
451         f[i_coord_offset+DIM*0+XX] += fix0;
452         f[i_coord_offset+DIM*0+YY] += fiy0;
453         f[i_coord_offset+DIM*0+ZZ] += fiz0;
454         tx                         += fix0;
455         ty                         += fiy0;
456         tz                         += fiz0;
457         fshift[i_shift_offset+XX]  += tx;
458         fshift[i_shift_offset+YY]  += ty;
459         fshift[i_shift_offset+ZZ]  += tz;
460
461         /* Increment number of inner iterations */
462         inneriter                  += j_index_end - j_index_start;
463
464         /* Outer loop uses 13 flops */
465     }
466
467     /* Increment number of outer iterations */
468     outeriter        += nri;
469
470     /* Update outer/inner flops */
471
472     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*53);
473 }