c45c40862c220eb9d0bc6e575930aecd61b43672
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRF_VdwBham_GeomW4P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwBham_GeomW4P1_VF_c
35  * Electrostatics interaction: ReactionField
36  * VdW interaction:            Buckingham
37  * Geometry:                   Water4-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecRF_VdwBham_GeomW4P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwioffset3;
63     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
64     int              vdwjidx0;
65     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
66     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
67     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
68     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
69     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
70     real             velec,felec,velecsum,facel,crf,krf,krf2;
71     real             *charge;
72     int              nvdwtype;
73     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
74     int              *vdwtype;
75     real             *vdwparam;
76
77     x                = xx[0];
78     f                = ff[0];
79
80     nri              = nlist->nri;
81     iinr             = nlist->iinr;
82     jindex           = nlist->jindex;
83     jjnr             = nlist->jjnr;
84     shiftidx         = nlist->shift;
85     gid              = nlist->gid;
86     shiftvec         = fr->shift_vec[0];
87     fshift           = fr->fshift[0];
88     facel            = fr->epsfac;
89     charge           = mdatoms->chargeA;
90     krf              = fr->ic->k_rf;
91     krf2             = krf*2.0;
92     crf              = fr->ic->c_rf;
93     nvdwtype         = fr->ntype;
94     vdwparam         = fr->nbfp;
95     vdwtype          = mdatoms->typeA;
96
97     /* Setup water-specific parameters */
98     inr              = nlist->iinr[0];
99     iq1              = facel*charge[inr+1];
100     iq2              = facel*charge[inr+2];
101     iq3              = facel*charge[inr+3];
102     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
103
104     outeriter        = 0;
105     inneriter        = 0;
106
107     /* Start outer loop over neighborlists */
108     for(iidx=0; iidx<nri; iidx++)
109     {
110         /* Load shift vector for this list */
111         i_shift_offset   = DIM*shiftidx[iidx];
112         shX              = shiftvec[i_shift_offset+XX];
113         shY              = shiftvec[i_shift_offset+YY];
114         shZ              = shiftvec[i_shift_offset+ZZ];
115
116         /* Load limits for loop over neighbors */
117         j_index_start    = jindex[iidx];
118         j_index_end      = jindex[iidx+1];
119
120         /* Get outer coordinate index */
121         inr              = iinr[iidx];
122         i_coord_offset   = DIM*inr;
123
124         /* Load i particle coords and add shift vector */
125         ix0              = shX + x[i_coord_offset+DIM*0+XX];
126         iy0              = shY + x[i_coord_offset+DIM*0+YY];
127         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
128         ix1              = shX + x[i_coord_offset+DIM*1+XX];
129         iy1              = shY + x[i_coord_offset+DIM*1+YY];
130         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
131         ix2              = shX + x[i_coord_offset+DIM*2+XX];
132         iy2              = shY + x[i_coord_offset+DIM*2+YY];
133         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
134         ix3              = shX + x[i_coord_offset+DIM*3+XX];
135         iy3              = shY + x[i_coord_offset+DIM*3+YY];
136         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
137
138         fix0             = 0.0;
139         fiy0             = 0.0;
140         fiz0             = 0.0;
141         fix1             = 0.0;
142         fiy1             = 0.0;
143         fiz1             = 0.0;
144         fix2             = 0.0;
145         fiy2             = 0.0;
146         fiz2             = 0.0;
147         fix3             = 0.0;
148         fiy3             = 0.0;
149         fiz3             = 0.0;
150
151         /* Reset potential sums */
152         velecsum         = 0.0;
153         vvdwsum          = 0.0;
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end; jidx++)
157         {
158             /* Get j neighbor index, and coordinate index */
159             jnr              = jjnr[jidx];
160             j_coord_offset   = DIM*jnr;
161
162             /* load j atom coordinates */
163             jx0              = x[j_coord_offset+DIM*0+XX];
164             jy0              = x[j_coord_offset+DIM*0+YY];
165             jz0              = x[j_coord_offset+DIM*0+ZZ];
166
167             /* Calculate displacement vector */
168             dx00             = ix0 - jx0;
169             dy00             = iy0 - jy0;
170             dz00             = iz0 - jz0;
171             dx10             = ix1 - jx0;
172             dy10             = iy1 - jy0;
173             dz10             = iz1 - jz0;
174             dx20             = ix2 - jx0;
175             dy20             = iy2 - jy0;
176             dz20             = iz2 - jz0;
177             dx30             = ix3 - jx0;
178             dy30             = iy3 - jy0;
179             dz30             = iz3 - jz0;
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
183             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
184             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
185             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
186
187             rinv00           = gmx_invsqrt(rsq00);
188             rinv10           = gmx_invsqrt(rsq10);
189             rinv20           = gmx_invsqrt(rsq20);
190             rinv30           = gmx_invsqrt(rsq30);
191
192             rinvsq00         = rinv00*rinv00;
193             rinvsq10         = rinv10*rinv10;
194             rinvsq20         = rinv20*rinv20;
195             rinvsq30         = rinv30*rinv30;
196
197             /* Load parameters for j particles */
198             jq0              = charge[jnr+0];
199             vdwjidx0         = 3*vdwtype[jnr+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = rsq00*rinv00;
206
207             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
208             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
209             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
210
211             /* BUCKINGHAM DISPERSION/REPULSION */
212             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
213             vvdw6            = c6_00*rinvsix;
214             br               = cexp2_00*r00;
215             vvdwexp          = cexp1_00*exp(-br);
216             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
217             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
218
219             /* Update potential sums from outer loop */
220             vvdwsum         += vvdw;
221
222             fscal            = fvdw;
223
224             /* Calculate temporary vectorial force */
225             tx               = fscal*dx00;
226             ty               = fscal*dy00;
227             tz               = fscal*dz00;
228
229             /* Update vectorial force */
230             fix0            += tx;
231             fiy0            += ty;
232             fiz0            += tz;
233             f[j_coord_offset+DIM*0+XX] -= tx;
234             f[j_coord_offset+DIM*0+YY] -= ty;
235             f[j_coord_offset+DIM*0+ZZ] -= tz;
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             qq10             = iq1*jq0;
242
243             /* REACTION-FIELD ELECTROSTATICS */
244             velec            = qq10*(rinv10+krf*rsq10-crf);
245             felec            = qq10*(rinv10*rinvsq10-krf2);
246
247             /* Update potential sums from outer loop */
248             velecsum        += velec;
249
250             fscal            = felec;
251
252             /* Calculate temporary vectorial force */
253             tx               = fscal*dx10;
254             ty               = fscal*dy10;
255             tz               = fscal*dz10;
256
257             /* Update vectorial force */
258             fix1            += tx;
259             fiy1            += ty;
260             fiz1            += tz;
261             f[j_coord_offset+DIM*0+XX] -= tx;
262             f[j_coord_offset+DIM*0+YY] -= ty;
263             f[j_coord_offset+DIM*0+ZZ] -= tz;
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             qq20             = iq2*jq0;
270
271             /* REACTION-FIELD ELECTROSTATICS */
272             velec            = qq20*(rinv20+krf*rsq20-crf);
273             felec            = qq20*(rinv20*rinvsq20-krf2);
274
275             /* Update potential sums from outer loop */
276             velecsum        += velec;
277
278             fscal            = felec;
279
280             /* Calculate temporary vectorial force */
281             tx               = fscal*dx20;
282             ty               = fscal*dy20;
283             tz               = fscal*dz20;
284
285             /* Update vectorial force */
286             fix2            += tx;
287             fiy2            += ty;
288             fiz2            += tz;
289             f[j_coord_offset+DIM*0+XX] -= tx;
290             f[j_coord_offset+DIM*0+YY] -= ty;
291             f[j_coord_offset+DIM*0+ZZ] -= tz;
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             qq30             = iq3*jq0;
298
299             /* REACTION-FIELD ELECTROSTATICS */
300             velec            = qq30*(rinv30+krf*rsq30-crf);
301             felec            = qq30*(rinv30*rinvsq30-krf2);
302
303             /* Update potential sums from outer loop */
304             velecsum        += velec;
305
306             fscal            = felec;
307
308             /* Calculate temporary vectorial force */
309             tx               = fscal*dx30;
310             ty               = fscal*dy30;
311             tz               = fscal*dz30;
312
313             /* Update vectorial force */
314             fix3            += tx;
315             fiy3            += ty;
316             fiz3            += tz;
317             f[j_coord_offset+DIM*0+XX] -= tx;
318             f[j_coord_offset+DIM*0+YY] -= ty;
319             f[j_coord_offset+DIM*0+ZZ] -= tz;
320
321             /* Inner loop uses 157 flops */
322         }
323         /* End of innermost loop */
324
325         tx = ty = tz = 0;
326         f[i_coord_offset+DIM*0+XX] += fix0;
327         f[i_coord_offset+DIM*0+YY] += fiy0;
328         f[i_coord_offset+DIM*0+ZZ] += fiz0;
329         tx                         += fix0;
330         ty                         += fiy0;
331         tz                         += fiz0;
332         f[i_coord_offset+DIM*1+XX] += fix1;
333         f[i_coord_offset+DIM*1+YY] += fiy1;
334         f[i_coord_offset+DIM*1+ZZ] += fiz1;
335         tx                         += fix1;
336         ty                         += fiy1;
337         tz                         += fiz1;
338         f[i_coord_offset+DIM*2+XX] += fix2;
339         f[i_coord_offset+DIM*2+YY] += fiy2;
340         f[i_coord_offset+DIM*2+ZZ] += fiz2;
341         tx                         += fix2;
342         ty                         += fiy2;
343         tz                         += fiz2;
344         f[i_coord_offset+DIM*3+XX] += fix3;
345         f[i_coord_offset+DIM*3+YY] += fiy3;
346         f[i_coord_offset+DIM*3+ZZ] += fiz3;
347         tx                         += fix3;
348         ty                         += fiy3;
349         tz                         += fiz3;
350         fshift[i_shift_offset+XX]  += tx;
351         fshift[i_shift_offset+YY]  += ty;
352         fshift[i_shift_offset+ZZ]  += tz;
353
354         ggid                        = gid[iidx];
355         /* Update potential energies */
356         kernel_data->energygrp_elec[ggid] += velecsum;
357         kernel_data->energygrp_vdw[ggid] += vvdwsum;
358
359         /* Increment number of inner iterations */
360         inneriter                  += j_index_end - j_index_start;
361
362         /* Outer loop uses 41 flops */
363     }
364
365     /* Increment number of outer iterations */
366     outeriter        += nri;
367
368     /* Update outer/inner flops */
369
370     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*157);
371 }
372 /*
373  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwBham_GeomW4P1_F_c
374  * Electrostatics interaction: ReactionField
375  * VdW interaction:            Buckingham
376  * Geometry:                   Water4-Particle
377  * Calculate force/pot:        Force
378  */
379 void
380 nb_kernel_ElecRF_VdwBham_GeomW4P1_F_c
381                     (t_nblist * gmx_restrict                nlist,
382                      rvec * gmx_restrict                    xx,
383                      rvec * gmx_restrict                    ff,
384                      t_forcerec * gmx_restrict              fr,
385                      t_mdatoms * gmx_restrict               mdatoms,
386                      nb_kernel_data_t * gmx_restrict        kernel_data,
387                      t_nrnb * gmx_restrict                  nrnb)
388 {
389     int              i_shift_offset,i_coord_offset,j_coord_offset;
390     int              j_index_start,j_index_end;
391     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
392     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
393     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
394     real             *shiftvec,*fshift,*x,*f;
395     int              vdwioffset0;
396     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
397     int              vdwioffset1;
398     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
399     int              vdwioffset2;
400     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
401     int              vdwioffset3;
402     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
403     int              vdwjidx0;
404     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
405     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
406     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
407     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
408     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
409     real             velec,felec,velecsum,facel,crf,krf,krf2;
410     real             *charge;
411     int              nvdwtype;
412     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
413     int              *vdwtype;
414     real             *vdwparam;
415
416     x                = xx[0];
417     f                = ff[0];
418
419     nri              = nlist->nri;
420     iinr             = nlist->iinr;
421     jindex           = nlist->jindex;
422     jjnr             = nlist->jjnr;
423     shiftidx         = nlist->shift;
424     gid              = nlist->gid;
425     shiftvec         = fr->shift_vec[0];
426     fshift           = fr->fshift[0];
427     facel            = fr->epsfac;
428     charge           = mdatoms->chargeA;
429     krf              = fr->ic->k_rf;
430     krf2             = krf*2.0;
431     crf              = fr->ic->c_rf;
432     nvdwtype         = fr->ntype;
433     vdwparam         = fr->nbfp;
434     vdwtype          = mdatoms->typeA;
435
436     /* Setup water-specific parameters */
437     inr              = nlist->iinr[0];
438     iq1              = facel*charge[inr+1];
439     iq2              = facel*charge[inr+2];
440     iq3              = facel*charge[inr+3];
441     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
442
443     outeriter        = 0;
444     inneriter        = 0;
445
446     /* Start outer loop over neighborlists */
447     for(iidx=0; iidx<nri; iidx++)
448     {
449         /* Load shift vector for this list */
450         i_shift_offset   = DIM*shiftidx[iidx];
451         shX              = shiftvec[i_shift_offset+XX];
452         shY              = shiftvec[i_shift_offset+YY];
453         shZ              = shiftvec[i_shift_offset+ZZ];
454
455         /* Load limits for loop over neighbors */
456         j_index_start    = jindex[iidx];
457         j_index_end      = jindex[iidx+1];
458
459         /* Get outer coordinate index */
460         inr              = iinr[iidx];
461         i_coord_offset   = DIM*inr;
462
463         /* Load i particle coords and add shift vector */
464         ix0              = shX + x[i_coord_offset+DIM*0+XX];
465         iy0              = shY + x[i_coord_offset+DIM*0+YY];
466         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
467         ix1              = shX + x[i_coord_offset+DIM*1+XX];
468         iy1              = shY + x[i_coord_offset+DIM*1+YY];
469         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
470         ix2              = shX + x[i_coord_offset+DIM*2+XX];
471         iy2              = shY + x[i_coord_offset+DIM*2+YY];
472         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
473         ix3              = shX + x[i_coord_offset+DIM*3+XX];
474         iy3              = shY + x[i_coord_offset+DIM*3+YY];
475         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
476
477         fix0             = 0.0;
478         fiy0             = 0.0;
479         fiz0             = 0.0;
480         fix1             = 0.0;
481         fiy1             = 0.0;
482         fiz1             = 0.0;
483         fix2             = 0.0;
484         fiy2             = 0.0;
485         fiz2             = 0.0;
486         fix3             = 0.0;
487         fiy3             = 0.0;
488         fiz3             = 0.0;
489
490         /* Start inner kernel loop */
491         for(jidx=j_index_start; jidx<j_index_end; jidx++)
492         {
493             /* Get j neighbor index, and coordinate index */
494             jnr              = jjnr[jidx];
495             j_coord_offset   = DIM*jnr;
496
497             /* load j atom coordinates */
498             jx0              = x[j_coord_offset+DIM*0+XX];
499             jy0              = x[j_coord_offset+DIM*0+YY];
500             jz0              = x[j_coord_offset+DIM*0+ZZ];
501
502             /* Calculate displacement vector */
503             dx00             = ix0 - jx0;
504             dy00             = iy0 - jy0;
505             dz00             = iz0 - jz0;
506             dx10             = ix1 - jx0;
507             dy10             = iy1 - jy0;
508             dz10             = iz1 - jz0;
509             dx20             = ix2 - jx0;
510             dy20             = iy2 - jy0;
511             dz20             = iz2 - jz0;
512             dx30             = ix3 - jx0;
513             dy30             = iy3 - jy0;
514             dz30             = iz3 - jz0;
515
516             /* Calculate squared distance and things based on it */
517             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
518             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
519             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
520             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
521
522             rinv00           = gmx_invsqrt(rsq00);
523             rinv10           = gmx_invsqrt(rsq10);
524             rinv20           = gmx_invsqrt(rsq20);
525             rinv30           = gmx_invsqrt(rsq30);
526
527             rinvsq00         = rinv00*rinv00;
528             rinvsq10         = rinv10*rinv10;
529             rinvsq20         = rinv20*rinv20;
530             rinvsq30         = rinv30*rinv30;
531
532             /* Load parameters for j particles */
533             jq0              = charge[jnr+0];
534             vdwjidx0         = 3*vdwtype[jnr+0];
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             r00              = rsq00*rinv00;
541
542             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
543             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
544             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
545
546             /* BUCKINGHAM DISPERSION/REPULSION */
547             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
548             vvdw6            = c6_00*rinvsix;
549             br               = cexp2_00*r00;
550             vvdwexp          = cexp1_00*exp(-br);
551             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
552
553             fscal            = fvdw;
554
555             /* Calculate temporary vectorial force */
556             tx               = fscal*dx00;
557             ty               = fscal*dy00;
558             tz               = fscal*dz00;
559
560             /* Update vectorial force */
561             fix0            += tx;
562             fiy0            += ty;
563             fiz0            += tz;
564             f[j_coord_offset+DIM*0+XX] -= tx;
565             f[j_coord_offset+DIM*0+YY] -= ty;
566             f[j_coord_offset+DIM*0+ZZ] -= tz;
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             qq10             = iq1*jq0;
573
574             /* REACTION-FIELD ELECTROSTATICS */
575             felec            = qq10*(rinv10*rinvsq10-krf2);
576
577             fscal            = felec;
578
579             /* Calculate temporary vectorial force */
580             tx               = fscal*dx10;
581             ty               = fscal*dy10;
582             tz               = fscal*dz10;
583
584             /* Update vectorial force */
585             fix1            += tx;
586             fiy1            += ty;
587             fiz1            += tz;
588             f[j_coord_offset+DIM*0+XX] -= tx;
589             f[j_coord_offset+DIM*0+YY] -= ty;
590             f[j_coord_offset+DIM*0+ZZ] -= tz;
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             qq20             = iq2*jq0;
597
598             /* REACTION-FIELD ELECTROSTATICS */
599             felec            = qq20*(rinv20*rinvsq20-krf2);
600
601             fscal            = felec;
602
603             /* Calculate temporary vectorial force */
604             tx               = fscal*dx20;
605             ty               = fscal*dy20;
606             tz               = fscal*dz20;
607
608             /* Update vectorial force */
609             fix2            += tx;
610             fiy2            += ty;
611             fiz2            += tz;
612             f[j_coord_offset+DIM*0+XX] -= tx;
613             f[j_coord_offset+DIM*0+YY] -= ty;
614             f[j_coord_offset+DIM*0+ZZ] -= tz;
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             qq30             = iq3*jq0;
621
622             /* REACTION-FIELD ELECTROSTATICS */
623             felec            = qq30*(rinv30*rinvsq30-krf2);
624
625             fscal            = felec;
626
627             /* Calculate temporary vectorial force */
628             tx               = fscal*dx30;
629             ty               = fscal*dy30;
630             tz               = fscal*dz30;
631
632             /* Update vectorial force */
633             fix3            += tx;
634             fiy3            += ty;
635             fiz3            += tz;
636             f[j_coord_offset+DIM*0+XX] -= tx;
637             f[j_coord_offset+DIM*0+YY] -= ty;
638             f[j_coord_offset+DIM*0+ZZ] -= tz;
639
640             /* Inner loop uses 139 flops */
641         }
642         /* End of innermost loop */
643
644         tx = ty = tz = 0;
645         f[i_coord_offset+DIM*0+XX] += fix0;
646         f[i_coord_offset+DIM*0+YY] += fiy0;
647         f[i_coord_offset+DIM*0+ZZ] += fiz0;
648         tx                         += fix0;
649         ty                         += fiy0;
650         tz                         += fiz0;
651         f[i_coord_offset+DIM*1+XX] += fix1;
652         f[i_coord_offset+DIM*1+YY] += fiy1;
653         f[i_coord_offset+DIM*1+ZZ] += fiz1;
654         tx                         += fix1;
655         ty                         += fiy1;
656         tz                         += fiz1;
657         f[i_coord_offset+DIM*2+XX] += fix2;
658         f[i_coord_offset+DIM*2+YY] += fiy2;
659         f[i_coord_offset+DIM*2+ZZ] += fiz2;
660         tx                         += fix2;
661         ty                         += fiy2;
662         tz                         += fiz2;
663         f[i_coord_offset+DIM*3+XX] += fix3;
664         f[i_coord_offset+DIM*3+YY] += fiy3;
665         f[i_coord_offset+DIM*3+ZZ] += fiz3;
666         tx                         += fix3;
667         ty                         += fiy3;
668         tz                         += fiz3;
669         fshift[i_shift_offset+XX]  += tx;
670         fshift[i_shift_offset+YY]  += ty;
671         fshift[i_shift_offset+ZZ]  += tz;
672
673         /* Increment number of inner iterations */
674         inneriter                  += j_index_end - j_index_start;
675
676         /* Outer loop uses 39 flops */
677     }
678
679     /* Increment number of outer iterations */
680     outeriter        += nri;
681
682     /* Update outer/inner flops */
683
684     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*139);
685 }