Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRF_VdwBham_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwBham_GeomP1P1_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            Buckingham
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwBham_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83
84     x                = xx[0];
85     f                = ff[0];
86
87     nri              = nlist->nri;
88     iinr             = nlist->iinr;
89     jindex           = nlist->jindex;
90     jjnr             = nlist->jjnr;
91     shiftidx         = nlist->shift;
92     gid              = nlist->gid;
93     shiftvec         = fr->shift_vec[0];
94     fshift           = fr->fshift[0];
95     facel            = fr->epsfac;
96     charge           = mdatoms->chargeA;
97     krf              = fr->ic->k_rf;
98     krf2             = krf*2.0;
99     crf              = fr->ic->c_rf;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     outeriter        = 0;
105     inneriter        = 0;
106
107     /* Start outer loop over neighborlists */
108     for(iidx=0; iidx<nri; iidx++)
109     {
110         /* Load shift vector for this list */
111         i_shift_offset   = DIM*shiftidx[iidx];
112         shX              = shiftvec[i_shift_offset+XX];
113         shY              = shiftvec[i_shift_offset+YY];
114         shZ              = shiftvec[i_shift_offset+ZZ];
115
116         /* Load limits for loop over neighbors */
117         j_index_start    = jindex[iidx];
118         j_index_end      = jindex[iidx+1];
119
120         /* Get outer coordinate index */
121         inr              = iinr[iidx];
122         i_coord_offset   = DIM*inr;
123
124         /* Load i particle coords and add shift vector */
125         ix0              = shX + x[i_coord_offset+DIM*0+XX];
126         iy0              = shY + x[i_coord_offset+DIM*0+YY];
127         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
128
129         fix0             = 0.0;
130         fiy0             = 0.0;
131         fiz0             = 0.0;
132
133         /* Load parameters for i particles */
134         iq0              = facel*charge[inr+0];
135         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
136
137         /* Reset potential sums */
138         velecsum         = 0.0;
139         vvdwsum          = 0.0;
140
141         /* Start inner kernel loop */
142         for(jidx=j_index_start; jidx<j_index_end; jidx++)
143         {
144             /* Get j neighbor index, and coordinate index */
145             jnr              = jjnr[jidx];
146             j_coord_offset   = DIM*jnr;
147
148             /* load j atom coordinates */
149             jx0              = x[j_coord_offset+DIM*0+XX];
150             jy0              = x[j_coord_offset+DIM*0+YY];
151             jz0              = x[j_coord_offset+DIM*0+ZZ];
152
153             /* Calculate displacement vector */
154             dx00             = ix0 - jx0;
155             dy00             = iy0 - jy0;
156             dz00             = iz0 - jz0;
157
158             /* Calculate squared distance and things based on it */
159             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
160
161             rinv00           = gmx_invsqrt(rsq00);
162
163             rinvsq00         = rinv00*rinv00;
164
165             /* Load parameters for j particles */
166             jq0              = charge[jnr+0];
167             vdwjidx0         = 3*vdwtype[jnr+0];
168
169             /**************************
170              * CALCULATE INTERACTIONS *
171              **************************/
172
173             r00              = rsq00*rinv00;
174
175             qq00             = iq0*jq0;
176             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
177             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
178             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
179
180             /* REACTION-FIELD ELECTROSTATICS */
181             velec            = qq00*(rinv00+krf*rsq00-crf);
182             felec            = qq00*(rinv00*rinvsq00-krf2);
183
184             /* BUCKINGHAM DISPERSION/REPULSION */
185             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
186             vvdw6            = c6_00*rinvsix;
187             br               = cexp2_00*r00;
188             vvdwexp          = cexp1_00*exp(-br);
189             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
190             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
191
192             /* Update potential sums from outer loop */
193             velecsum        += velec;
194             vvdwsum         += vvdw;
195
196             fscal            = felec+fvdw;
197
198             /* Calculate temporary vectorial force */
199             tx               = fscal*dx00;
200             ty               = fscal*dy00;
201             tz               = fscal*dz00;
202
203             /* Update vectorial force */
204             fix0            += tx;
205             fiy0            += ty;
206             fiz0            += tz;
207             f[j_coord_offset+DIM*0+XX] -= tx;
208             f[j_coord_offset+DIM*0+YY] -= ty;
209             f[j_coord_offset+DIM*0+ZZ] -= tz;
210
211             /* Inner loop uses 71 flops */
212         }
213         /* End of innermost loop */
214
215         tx = ty = tz = 0;
216         f[i_coord_offset+DIM*0+XX] += fix0;
217         f[i_coord_offset+DIM*0+YY] += fiy0;
218         f[i_coord_offset+DIM*0+ZZ] += fiz0;
219         tx                         += fix0;
220         ty                         += fiy0;
221         tz                         += fiz0;
222         fshift[i_shift_offset+XX]  += tx;
223         fshift[i_shift_offset+YY]  += ty;
224         fshift[i_shift_offset+ZZ]  += tz;
225
226         ggid                        = gid[iidx];
227         /* Update potential energies */
228         kernel_data->energygrp_elec[ggid] += velecsum;
229         kernel_data->energygrp_vdw[ggid] += vvdwsum;
230
231         /* Increment number of inner iterations */
232         inneriter                  += j_index_end - j_index_start;
233
234         /* Outer loop uses 15 flops */
235     }
236
237     /* Increment number of outer iterations */
238     outeriter        += nri;
239
240     /* Update outer/inner flops */
241
242     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*71);
243 }
244 /*
245  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwBham_GeomP1P1_F_c
246  * Electrostatics interaction: ReactionField
247  * VdW interaction:            Buckingham
248  * Geometry:                   Particle-Particle
249  * Calculate force/pot:        Force
250  */
251 void
252 nb_kernel_ElecRF_VdwBham_GeomP1P1_F_c
253                     (t_nblist                    * gmx_restrict       nlist,
254                      rvec                        * gmx_restrict          xx,
255                      rvec                        * gmx_restrict          ff,
256                      t_forcerec                  * gmx_restrict          fr,
257                      t_mdatoms                   * gmx_restrict     mdatoms,
258                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
259                      t_nrnb                      * gmx_restrict        nrnb)
260 {
261     int              i_shift_offset,i_coord_offset,j_coord_offset;
262     int              j_index_start,j_index_end;
263     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
264     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
265     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
266     real             *shiftvec,*fshift,*x,*f;
267     int              vdwioffset0;
268     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
269     int              vdwjidx0;
270     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
271     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
272     real             velec,felec,velecsum,facel,crf,krf,krf2;
273     real             *charge;
274     int              nvdwtype;
275     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
276     int              *vdwtype;
277     real             *vdwparam;
278
279     x                = xx[0];
280     f                = ff[0];
281
282     nri              = nlist->nri;
283     iinr             = nlist->iinr;
284     jindex           = nlist->jindex;
285     jjnr             = nlist->jjnr;
286     shiftidx         = nlist->shift;
287     gid              = nlist->gid;
288     shiftvec         = fr->shift_vec[0];
289     fshift           = fr->fshift[0];
290     facel            = fr->epsfac;
291     charge           = mdatoms->chargeA;
292     krf              = fr->ic->k_rf;
293     krf2             = krf*2.0;
294     crf              = fr->ic->c_rf;
295     nvdwtype         = fr->ntype;
296     vdwparam         = fr->nbfp;
297     vdwtype          = mdatoms->typeA;
298
299     outeriter        = 0;
300     inneriter        = 0;
301
302     /* Start outer loop over neighborlists */
303     for(iidx=0; iidx<nri; iidx++)
304     {
305         /* Load shift vector for this list */
306         i_shift_offset   = DIM*shiftidx[iidx];
307         shX              = shiftvec[i_shift_offset+XX];
308         shY              = shiftvec[i_shift_offset+YY];
309         shZ              = shiftvec[i_shift_offset+ZZ];
310
311         /* Load limits for loop over neighbors */
312         j_index_start    = jindex[iidx];
313         j_index_end      = jindex[iidx+1];
314
315         /* Get outer coordinate index */
316         inr              = iinr[iidx];
317         i_coord_offset   = DIM*inr;
318
319         /* Load i particle coords and add shift vector */
320         ix0              = shX + x[i_coord_offset+DIM*0+XX];
321         iy0              = shY + x[i_coord_offset+DIM*0+YY];
322         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
323
324         fix0             = 0.0;
325         fiy0             = 0.0;
326         fiz0             = 0.0;
327
328         /* Load parameters for i particles */
329         iq0              = facel*charge[inr+0];
330         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
331
332         /* Start inner kernel loop */
333         for(jidx=j_index_start; jidx<j_index_end; jidx++)
334         {
335             /* Get j neighbor index, and coordinate index */
336             jnr              = jjnr[jidx];
337             j_coord_offset   = DIM*jnr;
338
339             /* load j atom coordinates */
340             jx0              = x[j_coord_offset+DIM*0+XX];
341             jy0              = x[j_coord_offset+DIM*0+YY];
342             jz0              = x[j_coord_offset+DIM*0+ZZ];
343
344             /* Calculate displacement vector */
345             dx00             = ix0 - jx0;
346             dy00             = iy0 - jy0;
347             dz00             = iz0 - jz0;
348
349             /* Calculate squared distance and things based on it */
350             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
351
352             rinv00           = gmx_invsqrt(rsq00);
353
354             rinvsq00         = rinv00*rinv00;
355
356             /* Load parameters for j particles */
357             jq0              = charge[jnr+0];
358             vdwjidx0         = 3*vdwtype[jnr+0];
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r00              = rsq00*rinv00;
365
366             qq00             = iq0*jq0;
367             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
368             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
369             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
370
371             /* REACTION-FIELD ELECTROSTATICS */
372             felec            = qq00*(rinv00*rinvsq00-krf2);
373
374             /* BUCKINGHAM DISPERSION/REPULSION */
375             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
376             vvdw6            = c6_00*rinvsix;
377             br               = cexp2_00*r00;
378             vvdwexp          = cexp1_00*exp(-br);
379             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
380
381             fscal            = felec+fvdw;
382
383             /* Calculate temporary vectorial force */
384             tx               = fscal*dx00;
385             ty               = fscal*dy00;
386             tz               = fscal*dz00;
387
388             /* Update vectorial force */
389             fix0            += tx;
390             fiy0            += ty;
391             fiz0            += tz;
392             f[j_coord_offset+DIM*0+XX] -= tx;
393             f[j_coord_offset+DIM*0+YY] -= ty;
394             f[j_coord_offset+DIM*0+ZZ] -= tz;
395
396             /* Inner loop uses 63 flops */
397         }
398         /* End of innermost loop */
399
400         tx = ty = tz = 0;
401         f[i_coord_offset+DIM*0+XX] += fix0;
402         f[i_coord_offset+DIM*0+YY] += fiy0;
403         f[i_coord_offset+DIM*0+ZZ] += fiz0;
404         tx                         += fix0;
405         ty                         += fiy0;
406         tz                         += fiz0;
407         fshift[i_shift_offset+XX]  += tx;
408         fshift[i_shift_offset+YY]  += ty;
409         fshift[i_shift_offset+ZZ]  += tz;
410
411         /* Increment number of inner iterations */
412         inneriter                  += j_index_end - j_index_start;
413
414         /* Outer loop uses 13 flops */
415     }
416
417     /* Increment number of outer iterations */
418     outeriter        += nri;
419
420     /* Update outer/inner flops */
421
422     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*63);
423 }