Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwNone_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4W4_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            None
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwNone_GeomW4W4_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwioffset3;
77     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx1;
79     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
80     int              vdwjidx2;
81     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
82     int              vdwjidx3;
83     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
84     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
85     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
86     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
87     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
88     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
89     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
90     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
91     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
92     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
93     real             velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = fr->epsfac;
108     charge           = mdatoms->chargeA;
109     krf              = fr->ic->k_rf;
110     krf2             = krf*2.0;
111     crf              = fr->ic->c_rf;
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq1              = facel*charge[inr+1];
116     iq2              = facel*charge[inr+2];
117     iq3              = facel*charge[inr+3];
118
119     jq1              = charge[inr+1];
120     jq2              = charge[inr+2];
121     jq3              = charge[inr+3];
122     qq11             = iq1*jq1;
123     qq12             = iq1*jq2;
124     qq13             = iq1*jq3;
125     qq21             = iq2*jq1;
126     qq22             = iq2*jq2;
127     qq23             = iq2*jq3;
128     qq31             = iq3*jq1;
129     qq32             = iq3*jq2;
130     qq33             = iq3*jq3;
131
132     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133     rcutoff          = fr->rcoulomb;
134     rcutoff2         = rcutoff*rcutoff;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144         shX              = shiftvec[i_shift_offset+XX];
145         shY              = shiftvec[i_shift_offset+YY];
146         shZ              = shiftvec[i_shift_offset+ZZ];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         ix1              = shX + x[i_coord_offset+DIM*1+XX];
158         iy1              = shY + x[i_coord_offset+DIM*1+YY];
159         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
160         ix2              = shX + x[i_coord_offset+DIM*2+XX];
161         iy2              = shY + x[i_coord_offset+DIM*2+YY];
162         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
163         ix3              = shX + x[i_coord_offset+DIM*3+XX];
164         iy3              = shY + x[i_coord_offset+DIM*3+YY];
165         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
166
167         fix1             = 0.0;
168         fiy1             = 0.0;
169         fiz1             = 0.0;
170         fix2             = 0.0;
171         fiy2             = 0.0;
172         fiz2             = 0.0;
173         fix3             = 0.0;
174         fiy3             = 0.0;
175         fiz3             = 0.0;
176
177         /* Reset potential sums */
178         velecsum         = 0.0;
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end; jidx++)
182         {
183             /* Get j neighbor index, and coordinate index */
184             jnr              = jjnr[jidx];
185             j_coord_offset   = DIM*jnr;
186
187             /* load j atom coordinates */
188             jx1              = x[j_coord_offset+DIM*1+XX];
189             jy1              = x[j_coord_offset+DIM*1+YY];
190             jz1              = x[j_coord_offset+DIM*1+ZZ];
191             jx2              = x[j_coord_offset+DIM*2+XX];
192             jy2              = x[j_coord_offset+DIM*2+YY];
193             jz2              = x[j_coord_offset+DIM*2+ZZ];
194             jx3              = x[j_coord_offset+DIM*3+XX];
195             jy3              = x[j_coord_offset+DIM*3+YY];
196             jz3              = x[j_coord_offset+DIM*3+ZZ];
197
198             /* Calculate displacement vector */
199             dx11             = ix1 - jx1;
200             dy11             = iy1 - jy1;
201             dz11             = iz1 - jz1;
202             dx12             = ix1 - jx2;
203             dy12             = iy1 - jy2;
204             dz12             = iz1 - jz2;
205             dx13             = ix1 - jx3;
206             dy13             = iy1 - jy3;
207             dz13             = iz1 - jz3;
208             dx21             = ix2 - jx1;
209             dy21             = iy2 - jy1;
210             dz21             = iz2 - jz1;
211             dx22             = ix2 - jx2;
212             dy22             = iy2 - jy2;
213             dz22             = iz2 - jz2;
214             dx23             = ix2 - jx3;
215             dy23             = iy2 - jy3;
216             dz23             = iz2 - jz3;
217             dx31             = ix3 - jx1;
218             dy31             = iy3 - jy1;
219             dz31             = iz3 - jz1;
220             dx32             = ix3 - jx2;
221             dy32             = iy3 - jy2;
222             dz32             = iz3 - jz2;
223             dx33             = ix3 - jx3;
224             dy33             = iy3 - jy3;
225             dz33             = iz3 - jz3;
226
227             /* Calculate squared distance and things based on it */
228             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
229             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
230             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
231             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
232             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
233             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
234             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
235             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
236             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
237
238             rinv11           = gmx_invsqrt(rsq11);
239             rinv12           = gmx_invsqrt(rsq12);
240             rinv13           = gmx_invsqrt(rsq13);
241             rinv21           = gmx_invsqrt(rsq21);
242             rinv22           = gmx_invsqrt(rsq22);
243             rinv23           = gmx_invsqrt(rsq23);
244             rinv31           = gmx_invsqrt(rsq31);
245             rinv32           = gmx_invsqrt(rsq32);
246             rinv33           = gmx_invsqrt(rsq33);
247
248             rinvsq11         = rinv11*rinv11;
249             rinvsq12         = rinv12*rinv12;
250             rinvsq13         = rinv13*rinv13;
251             rinvsq21         = rinv21*rinv21;
252             rinvsq22         = rinv22*rinv22;
253             rinvsq23         = rinv23*rinv23;
254             rinvsq31         = rinv31*rinv31;
255             rinvsq32         = rinv32*rinv32;
256             rinvsq33         = rinv33*rinv33;
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             if (rsq11<rcutoff2)
263             {
264
265             /* REACTION-FIELD ELECTROSTATICS */
266             velec            = qq11*(rinv11+krf*rsq11-crf);
267             felec            = qq11*(rinv11*rinvsq11-krf2);
268
269             /* Update potential sums from outer loop */
270             velecsum        += velec;
271
272             fscal            = felec;
273
274             /* Calculate temporary vectorial force */
275             tx               = fscal*dx11;
276             ty               = fscal*dy11;
277             tz               = fscal*dz11;
278
279             /* Update vectorial force */
280             fix1            += tx;
281             fiy1            += ty;
282             fiz1            += tz;
283             f[j_coord_offset+DIM*1+XX] -= tx;
284             f[j_coord_offset+DIM*1+YY] -= ty;
285             f[j_coord_offset+DIM*1+ZZ] -= tz;
286
287             }
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             if (rsq12<rcutoff2)
294             {
295
296             /* REACTION-FIELD ELECTROSTATICS */
297             velec            = qq12*(rinv12+krf*rsq12-crf);
298             felec            = qq12*(rinv12*rinvsq12-krf2);
299
300             /* Update potential sums from outer loop */
301             velecsum        += velec;
302
303             fscal            = felec;
304
305             /* Calculate temporary vectorial force */
306             tx               = fscal*dx12;
307             ty               = fscal*dy12;
308             tz               = fscal*dz12;
309
310             /* Update vectorial force */
311             fix1            += tx;
312             fiy1            += ty;
313             fiz1            += tz;
314             f[j_coord_offset+DIM*2+XX] -= tx;
315             f[j_coord_offset+DIM*2+YY] -= ty;
316             f[j_coord_offset+DIM*2+ZZ] -= tz;
317
318             }
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (rsq13<rcutoff2)
325             {
326
327             /* REACTION-FIELD ELECTROSTATICS */
328             velec            = qq13*(rinv13+krf*rsq13-crf);
329             felec            = qq13*(rinv13*rinvsq13-krf2);
330
331             /* Update potential sums from outer loop */
332             velecsum        += velec;
333
334             fscal            = felec;
335
336             /* Calculate temporary vectorial force */
337             tx               = fscal*dx13;
338             ty               = fscal*dy13;
339             tz               = fscal*dz13;
340
341             /* Update vectorial force */
342             fix1            += tx;
343             fiy1            += ty;
344             fiz1            += tz;
345             f[j_coord_offset+DIM*3+XX] -= tx;
346             f[j_coord_offset+DIM*3+YY] -= ty;
347             f[j_coord_offset+DIM*3+ZZ] -= tz;
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (rsq21<rcutoff2)
356             {
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = qq21*(rinv21+krf*rsq21-crf);
360             felec            = qq21*(rinv21*rinvsq21-krf2);
361
362             /* Update potential sums from outer loop */
363             velecsum        += velec;
364
365             fscal            = felec;
366
367             /* Calculate temporary vectorial force */
368             tx               = fscal*dx21;
369             ty               = fscal*dy21;
370             tz               = fscal*dz21;
371
372             /* Update vectorial force */
373             fix2            += tx;
374             fiy2            += ty;
375             fiz2            += tz;
376             f[j_coord_offset+DIM*1+XX] -= tx;
377             f[j_coord_offset+DIM*1+YY] -= ty;
378             f[j_coord_offset+DIM*1+ZZ] -= tz;
379
380             }
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             if (rsq22<rcutoff2)
387             {
388
389             /* REACTION-FIELD ELECTROSTATICS */
390             velec            = qq22*(rinv22+krf*rsq22-crf);
391             felec            = qq22*(rinv22*rinvsq22-krf2);
392
393             /* Update potential sums from outer loop */
394             velecsum        += velec;
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = fscal*dx22;
400             ty               = fscal*dy22;
401             tz               = fscal*dz22;
402
403             /* Update vectorial force */
404             fix2            += tx;
405             fiy2            += ty;
406             fiz2            += tz;
407             f[j_coord_offset+DIM*2+XX] -= tx;
408             f[j_coord_offset+DIM*2+YY] -= ty;
409             f[j_coord_offset+DIM*2+ZZ] -= tz;
410
411             }
412
413             /**************************
414              * CALCULATE INTERACTIONS *
415              **************************/
416
417             if (rsq23<rcutoff2)
418             {
419
420             /* REACTION-FIELD ELECTROSTATICS */
421             velec            = qq23*(rinv23+krf*rsq23-crf);
422             felec            = qq23*(rinv23*rinvsq23-krf2);
423
424             /* Update potential sums from outer loop */
425             velecsum        += velec;
426
427             fscal            = felec;
428
429             /* Calculate temporary vectorial force */
430             tx               = fscal*dx23;
431             ty               = fscal*dy23;
432             tz               = fscal*dz23;
433
434             /* Update vectorial force */
435             fix2            += tx;
436             fiy2            += ty;
437             fiz2            += tz;
438             f[j_coord_offset+DIM*3+XX] -= tx;
439             f[j_coord_offset+DIM*3+YY] -= ty;
440             f[j_coord_offset+DIM*3+ZZ] -= tz;
441
442             }
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             if (rsq31<rcutoff2)
449             {
450
451             /* REACTION-FIELD ELECTROSTATICS */
452             velec            = qq31*(rinv31+krf*rsq31-crf);
453             felec            = qq31*(rinv31*rinvsq31-krf2);
454
455             /* Update potential sums from outer loop */
456             velecsum        += velec;
457
458             fscal            = felec;
459
460             /* Calculate temporary vectorial force */
461             tx               = fscal*dx31;
462             ty               = fscal*dy31;
463             tz               = fscal*dz31;
464
465             /* Update vectorial force */
466             fix3            += tx;
467             fiy3            += ty;
468             fiz3            += tz;
469             f[j_coord_offset+DIM*1+XX] -= tx;
470             f[j_coord_offset+DIM*1+YY] -= ty;
471             f[j_coord_offset+DIM*1+ZZ] -= tz;
472
473             }
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             if (rsq32<rcutoff2)
480             {
481
482             /* REACTION-FIELD ELECTROSTATICS */
483             velec            = qq32*(rinv32+krf*rsq32-crf);
484             felec            = qq32*(rinv32*rinvsq32-krf2);
485
486             /* Update potential sums from outer loop */
487             velecsum        += velec;
488
489             fscal            = felec;
490
491             /* Calculate temporary vectorial force */
492             tx               = fscal*dx32;
493             ty               = fscal*dy32;
494             tz               = fscal*dz32;
495
496             /* Update vectorial force */
497             fix3            += tx;
498             fiy3            += ty;
499             fiz3            += tz;
500             f[j_coord_offset+DIM*2+XX] -= tx;
501             f[j_coord_offset+DIM*2+YY] -= ty;
502             f[j_coord_offset+DIM*2+ZZ] -= tz;
503
504             }
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             if (rsq33<rcutoff2)
511             {
512
513             /* REACTION-FIELD ELECTROSTATICS */
514             velec            = qq33*(rinv33+krf*rsq33-crf);
515             felec            = qq33*(rinv33*rinvsq33-krf2);
516
517             /* Update potential sums from outer loop */
518             velecsum        += velec;
519
520             fscal            = felec;
521
522             /* Calculate temporary vectorial force */
523             tx               = fscal*dx33;
524             ty               = fscal*dy33;
525             tz               = fscal*dz33;
526
527             /* Update vectorial force */
528             fix3            += tx;
529             fiy3            += ty;
530             fiz3            += tz;
531             f[j_coord_offset+DIM*3+XX] -= tx;
532             f[j_coord_offset+DIM*3+YY] -= ty;
533             f[j_coord_offset+DIM*3+ZZ] -= tz;
534
535             }
536
537             /* Inner loop uses 279 flops */
538         }
539         /* End of innermost loop */
540
541         tx = ty = tz = 0;
542         f[i_coord_offset+DIM*1+XX] += fix1;
543         f[i_coord_offset+DIM*1+YY] += fiy1;
544         f[i_coord_offset+DIM*1+ZZ] += fiz1;
545         tx                         += fix1;
546         ty                         += fiy1;
547         tz                         += fiz1;
548         f[i_coord_offset+DIM*2+XX] += fix2;
549         f[i_coord_offset+DIM*2+YY] += fiy2;
550         f[i_coord_offset+DIM*2+ZZ] += fiz2;
551         tx                         += fix2;
552         ty                         += fiy2;
553         tz                         += fiz2;
554         f[i_coord_offset+DIM*3+XX] += fix3;
555         f[i_coord_offset+DIM*3+YY] += fiy3;
556         f[i_coord_offset+DIM*3+ZZ] += fiz3;
557         tx                         += fix3;
558         ty                         += fiy3;
559         tz                         += fiz3;
560         fshift[i_shift_offset+XX]  += tx;
561         fshift[i_shift_offset+YY]  += ty;
562         fshift[i_shift_offset+ZZ]  += tz;
563
564         ggid                        = gid[iidx];
565         /* Update potential energies */
566         kernel_data->energygrp_elec[ggid] += velecsum;
567
568         /* Increment number of inner iterations */
569         inneriter                  += j_index_end - j_index_start;
570
571         /* Outer loop uses 31 flops */
572     }
573
574     /* Increment number of outer iterations */
575     outeriter        += nri;
576
577     /* Update outer/inner flops */
578
579     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*31 + inneriter*279);
580 }
581 /*
582  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4W4_F_c
583  * Electrostatics interaction: ReactionField
584  * VdW interaction:            None
585  * Geometry:                   Water4-Water4
586  * Calculate force/pot:        Force
587  */
588 void
589 nb_kernel_ElecRFCut_VdwNone_GeomW4W4_F_c
590                     (t_nblist                    * gmx_restrict       nlist,
591                      rvec                        * gmx_restrict          xx,
592                      rvec                        * gmx_restrict          ff,
593                      t_forcerec                  * gmx_restrict          fr,
594                      t_mdatoms                   * gmx_restrict     mdatoms,
595                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
596                      t_nrnb                      * gmx_restrict        nrnb)
597 {
598     int              i_shift_offset,i_coord_offset,j_coord_offset;
599     int              j_index_start,j_index_end;
600     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
601     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
602     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
603     real             *shiftvec,*fshift,*x,*f;
604     int              vdwioffset1;
605     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
606     int              vdwioffset2;
607     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
608     int              vdwioffset3;
609     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
610     int              vdwjidx1;
611     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
612     int              vdwjidx2;
613     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
614     int              vdwjidx3;
615     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
616     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
617     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
618     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
619     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
620     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
621     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
622     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
623     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
624     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
625     real             velec,felec,velecsum,facel,crf,krf,krf2;
626     real             *charge;
627
628     x                = xx[0];
629     f                = ff[0];
630
631     nri              = nlist->nri;
632     iinr             = nlist->iinr;
633     jindex           = nlist->jindex;
634     jjnr             = nlist->jjnr;
635     shiftidx         = nlist->shift;
636     gid              = nlist->gid;
637     shiftvec         = fr->shift_vec[0];
638     fshift           = fr->fshift[0];
639     facel            = fr->epsfac;
640     charge           = mdatoms->chargeA;
641     krf              = fr->ic->k_rf;
642     krf2             = krf*2.0;
643     crf              = fr->ic->c_rf;
644
645     /* Setup water-specific parameters */
646     inr              = nlist->iinr[0];
647     iq1              = facel*charge[inr+1];
648     iq2              = facel*charge[inr+2];
649     iq3              = facel*charge[inr+3];
650
651     jq1              = charge[inr+1];
652     jq2              = charge[inr+2];
653     jq3              = charge[inr+3];
654     qq11             = iq1*jq1;
655     qq12             = iq1*jq2;
656     qq13             = iq1*jq3;
657     qq21             = iq2*jq1;
658     qq22             = iq2*jq2;
659     qq23             = iq2*jq3;
660     qq31             = iq3*jq1;
661     qq32             = iq3*jq2;
662     qq33             = iq3*jq3;
663
664     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
665     rcutoff          = fr->rcoulomb;
666     rcutoff2         = rcutoff*rcutoff;
667
668     outeriter        = 0;
669     inneriter        = 0;
670
671     /* Start outer loop over neighborlists */
672     for(iidx=0; iidx<nri; iidx++)
673     {
674         /* Load shift vector for this list */
675         i_shift_offset   = DIM*shiftidx[iidx];
676         shX              = shiftvec[i_shift_offset+XX];
677         shY              = shiftvec[i_shift_offset+YY];
678         shZ              = shiftvec[i_shift_offset+ZZ];
679
680         /* Load limits for loop over neighbors */
681         j_index_start    = jindex[iidx];
682         j_index_end      = jindex[iidx+1];
683
684         /* Get outer coordinate index */
685         inr              = iinr[iidx];
686         i_coord_offset   = DIM*inr;
687
688         /* Load i particle coords and add shift vector */
689         ix1              = shX + x[i_coord_offset+DIM*1+XX];
690         iy1              = shY + x[i_coord_offset+DIM*1+YY];
691         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
692         ix2              = shX + x[i_coord_offset+DIM*2+XX];
693         iy2              = shY + x[i_coord_offset+DIM*2+YY];
694         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
695         ix3              = shX + x[i_coord_offset+DIM*3+XX];
696         iy3              = shY + x[i_coord_offset+DIM*3+YY];
697         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
698
699         fix1             = 0.0;
700         fiy1             = 0.0;
701         fiz1             = 0.0;
702         fix2             = 0.0;
703         fiy2             = 0.0;
704         fiz2             = 0.0;
705         fix3             = 0.0;
706         fiy3             = 0.0;
707         fiz3             = 0.0;
708
709         /* Start inner kernel loop */
710         for(jidx=j_index_start; jidx<j_index_end; jidx++)
711         {
712             /* Get j neighbor index, and coordinate index */
713             jnr              = jjnr[jidx];
714             j_coord_offset   = DIM*jnr;
715
716             /* load j atom coordinates */
717             jx1              = x[j_coord_offset+DIM*1+XX];
718             jy1              = x[j_coord_offset+DIM*1+YY];
719             jz1              = x[j_coord_offset+DIM*1+ZZ];
720             jx2              = x[j_coord_offset+DIM*2+XX];
721             jy2              = x[j_coord_offset+DIM*2+YY];
722             jz2              = x[j_coord_offset+DIM*2+ZZ];
723             jx3              = x[j_coord_offset+DIM*3+XX];
724             jy3              = x[j_coord_offset+DIM*3+YY];
725             jz3              = x[j_coord_offset+DIM*3+ZZ];
726
727             /* Calculate displacement vector */
728             dx11             = ix1 - jx1;
729             dy11             = iy1 - jy1;
730             dz11             = iz1 - jz1;
731             dx12             = ix1 - jx2;
732             dy12             = iy1 - jy2;
733             dz12             = iz1 - jz2;
734             dx13             = ix1 - jx3;
735             dy13             = iy1 - jy3;
736             dz13             = iz1 - jz3;
737             dx21             = ix2 - jx1;
738             dy21             = iy2 - jy1;
739             dz21             = iz2 - jz1;
740             dx22             = ix2 - jx2;
741             dy22             = iy2 - jy2;
742             dz22             = iz2 - jz2;
743             dx23             = ix2 - jx3;
744             dy23             = iy2 - jy3;
745             dz23             = iz2 - jz3;
746             dx31             = ix3 - jx1;
747             dy31             = iy3 - jy1;
748             dz31             = iz3 - jz1;
749             dx32             = ix3 - jx2;
750             dy32             = iy3 - jy2;
751             dz32             = iz3 - jz2;
752             dx33             = ix3 - jx3;
753             dy33             = iy3 - jy3;
754             dz33             = iz3 - jz3;
755
756             /* Calculate squared distance and things based on it */
757             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
758             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
759             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
760             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
761             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
762             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
763             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
764             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
765             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
766
767             rinv11           = gmx_invsqrt(rsq11);
768             rinv12           = gmx_invsqrt(rsq12);
769             rinv13           = gmx_invsqrt(rsq13);
770             rinv21           = gmx_invsqrt(rsq21);
771             rinv22           = gmx_invsqrt(rsq22);
772             rinv23           = gmx_invsqrt(rsq23);
773             rinv31           = gmx_invsqrt(rsq31);
774             rinv32           = gmx_invsqrt(rsq32);
775             rinv33           = gmx_invsqrt(rsq33);
776
777             rinvsq11         = rinv11*rinv11;
778             rinvsq12         = rinv12*rinv12;
779             rinvsq13         = rinv13*rinv13;
780             rinvsq21         = rinv21*rinv21;
781             rinvsq22         = rinv22*rinv22;
782             rinvsq23         = rinv23*rinv23;
783             rinvsq31         = rinv31*rinv31;
784             rinvsq32         = rinv32*rinv32;
785             rinvsq33         = rinv33*rinv33;
786
787             /**************************
788              * CALCULATE INTERACTIONS *
789              **************************/
790
791             if (rsq11<rcutoff2)
792             {
793
794             /* REACTION-FIELD ELECTROSTATICS */
795             felec            = qq11*(rinv11*rinvsq11-krf2);
796
797             fscal            = felec;
798
799             /* Calculate temporary vectorial force */
800             tx               = fscal*dx11;
801             ty               = fscal*dy11;
802             tz               = fscal*dz11;
803
804             /* Update vectorial force */
805             fix1            += tx;
806             fiy1            += ty;
807             fiz1            += tz;
808             f[j_coord_offset+DIM*1+XX] -= tx;
809             f[j_coord_offset+DIM*1+YY] -= ty;
810             f[j_coord_offset+DIM*1+ZZ] -= tz;
811
812             }
813
814             /**************************
815              * CALCULATE INTERACTIONS *
816              **************************/
817
818             if (rsq12<rcutoff2)
819             {
820
821             /* REACTION-FIELD ELECTROSTATICS */
822             felec            = qq12*(rinv12*rinvsq12-krf2);
823
824             fscal            = felec;
825
826             /* Calculate temporary vectorial force */
827             tx               = fscal*dx12;
828             ty               = fscal*dy12;
829             tz               = fscal*dz12;
830
831             /* Update vectorial force */
832             fix1            += tx;
833             fiy1            += ty;
834             fiz1            += tz;
835             f[j_coord_offset+DIM*2+XX] -= tx;
836             f[j_coord_offset+DIM*2+YY] -= ty;
837             f[j_coord_offset+DIM*2+ZZ] -= tz;
838
839             }
840
841             /**************************
842              * CALCULATE INTERACTIONS *
843              **************************/
844
845             if (rsq13<rcutoff2)
846             {
847
848             /* REACTION-FIELD ELECTROSTATICS */
849             felec            = qq13*(rinv13*rinvsq13-krf2);
850
851             fscal            = felec;
852
853             /* Calculate temporary vectorial force */
854             tx               = fscal*dx13;
855             ty               = fscal*dy13;
856             tz               = fscal*dz13;
857
858             /* Update vectorial force */
859             fix1            += tx;
860             fiy1            += ty;
861             fiz1            += tz;
862             f[j_coord_offset+DIM*3+XX] -= tx;
863             f[j_coord_offset+DIM*3+YY] -= ty;
864             f[j_coord_offset+DIM*3+ZZ] -= tz;
865
866             }
867
868             /**************************
869              * CALCULATE INTERACTIONS *
870              **************************/
871
872             if (rsq21<rcutoff2)
873             {
874
875             /* REACTION-FIELD ELECTROSTATICS */
876             felec            = qq21*(rinv21*rinvsq21-krf2);
877
878             fscal            = felec;
879
880             /* Calculate temporary vectorial force */
881             tx               = fscal*dx21;
882             ty               = fscal*dy21;
883             tz               = fscal*dz21;
884
885             /* Update vectorial force */
886             fix2            += tx;
887             fiy2            += ty;
888             fiz2            += tz;
889             f[j_coord_offset+DIM*1+XX] -= tx;
890             f[j_coord_offset+DIM*1+YY] -= ty;
891             f[j_coord_offset+DIM*1+ZZ] -= tz;
892
893             }
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             if (rsq22<rcutoff2)
900             {
901
902             /* REACTION-FIELD ELECTROSTATICS */
903             felec            = qq22*(rinv22*rinvsq22-krf2);
904
905             fscal            = felec;
906
907             /* Calculate temporary vectorial force */
908             tx               = fscal*dx22;
909             ty               = fscal*dy22;
910             tz               = fscal*dz22;
911
912             /* Update vectorial force */
913             fix2            += tx;
914             fiy2            += ty;
915             fiz2            += tz;
916             f[j_coord_offset+DIM*2+XX] -= tx;
917             f[j_coord_offset+DIM*2+YY] -= ty;
918             f[j_coord_offset+DIM*2+ZZ] -= tz;
919
920             }
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             if (rsq23<rcutoff2)
927             {
928
929             /* REACTION-FIELD ELECTROSTATICS */
930             felec            = qq23*(rinv23*rinvsq23-krf2);
931
932             fscal            = felec;
933
934             /* Calculate temporary vectorial force */
935             tx               = fscal*dx23;
936             ty               = fscal*dy23;
937             tz               = fscal*dz23;
938
939             /* Update vectorial force */
940             fix2            += tx;
941             fiy2            += ty;
942             fiz2            += tz;
943             f[j_coord_offset+DIM*3+XX] -= tx;
944             f[j_coord_offset+DIM*3+YY] -= ty;
945             f[j_coord_offset+DIM*3+ZZ] -= tz;
946
947             }
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             if (rsq31<rcutoff2)
954             {
955
956             /* REACTION-FIELD ELECTROSTATICS */
957             felec            = qq31*(rinv31*rinvsq31-krf2);
958
959             fscal            = felec;
960
961             /* Calculate temporary vectorial force */
962             tx               = fscal*dx31;
963             ty               = fscal*dy31;
964             tz               = fscal*dz31;
965
966             /* Update vectorial force */
967             fix3            += tx;
968             fiy3            += ty;
969             fiz3            += tz;
970             f[j_coord_offset+DIM*1+XX] -= tx;
971             f[j_coord_offset+DIM*1+YY] -= ty;
972             f[j_coord_offset+DIM*1+ZZ] -= tz;
973
974             }
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             if (rsq32<rcutoff2)
981             {
982
983             /* REACTION-FIELD ELECTROSTATICS */
984             felec            = qq32*(rinv32*rinvsq32-krf2);
985
986             fscal            = felec;
987
988             /* Calculate temporary vectorial force */
989             tx               = fscal*dx32;
990             ty               = fscal*dy32;
991             tz               = fscal*dz32;
992
993             /* Update vectorial force */
994             fix3            += tx;
995             fiy3            += ty;
996             fiz3            += tz;
997             f[j_coord_offset+DIM*2+XX] -= tx;
998             f[j_coord_offset+DIM*2+YY] -= ty;
999             f[j_coord_offset+DIM*2+ZZ] -= tz;
1000
1001             }
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             if (rsq33<rcutoff2)
1008             {
1009
1010             /* REACTION-FIELD ELECTROSTATICS */
1011             felec            = qq33*(rinv33*rinvsq33-krf2);
1012
1013             fscal            = felec;
1014
1015             /* Calculate temporary vectorial force */
1016             tx               = fscal*dx33;
1017             ty               = fscal*dy33;
1018             tz               = fscal*dz33;
1019
1020             /* Update vectorial force */
1021             fix3            += tx;
1022             fiy3            += ty;
1023             fiz3            += tz;
1024             f[j_coord_offset+DIM*3+XX] -= tx;
1025             f[j_coord_offset+DIM*3+YY] -= ty;
1026             f[j_coord_offset+DIM*3+ZZ] -= tz;
1027
1028             }
1029
1030             /* Inner loop uses 234 flops */
1031         }
1032         /* End of innermost loop */
1033
1034         tx = ty = tz = 0;
1035         f[i_coord_offset+DIM*1+XX] += fix1;
1036         f[i_coord_offset+DIM*1+YY] += fiy1;
1037         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1038         tx                         += fix1;
1039         ty                         += fiy1;
1040         tz                         += fiz1;
1041         f[i_coord_offset+DIM*2+XX] += fix2;
1042         f[i_coord_offset+DIM*2+YY] += fiy2;
1043         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1044         tx                         += fix2;
1045         ty                         += fiy2;
1046         tz                         += fiz2;
1047         f[i_coord_offset+DIM*3+XX] += fix3;
1048         f[i_coord_offset+DIM*3+YY] += fiy3;
1049         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1050         tx                         += fix3;
1051         ty                         += fiy3;
1052         tz                         += fiz3;
1053         fshift[i_shift_offset+XX]  += tx;
1054         fshift[i_shift_offset+YY]  += ty;
1055         fshift[i_shift_offset+ZZ]  += tz;
1056
1057         /* Increment number of inner iterations */
1058         inneriter                  += j_index_end - j_index_start;
1059
1060         /* Outer loop uses 30 flops */
1061     }
1062
1063     /* Increment number of outer iterations */
1064     outeriter        += nri;
1065
1066     /* Update outer/inner flops */
1067
1068     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*30 + inneriter*234);
1069 }