40d96391bb1ab73f24eef2ba937bf0a3aabee666
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwNone_GeomW3W3_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3W3_VF_c
49  * Electrostatics interaction: ReactionField
50  * VdW interaction:            None
51  * Geometry:                   Water3-Water3
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecRFCut_VdwNone_GeomW3W3_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0;
77     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     int              vdwjidx1;
79     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
80     int              vdwjidx2;
81     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
84     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
85     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
86     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
87     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
88     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
89     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
90     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
91     real             velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = fr->epsfac;
106     charge           = mdatoms->chargeA;
107     krf              = fr->ic->k_rf;
108     krf2             = krf*2.0;
109     crf              = fr->ic->c_rf;
110
111     /* Setup water-specific parameters */
112     inr              = nlist->iinr[0];
113     iq0              = facel*charge[inr+0];
114     iq1              = facel*charge[inr+1];
115     iq2              = facel*charge[inr+2];
116
117     jq0              = charge[inr+0];
118     jq1              = charge[inr+1];
119     jq2              = charge[inr+2];
120     qq00             = iq0*jq0;
121     qq01             = iq0*jq1;
122     qq02             = iq0*jq2;
123     qq10             = iq1*jq0;
124     qq11             = iq1*jq1;
125     qq12             = iq1*jq2;
126     qq20             = iq2*jq0;
127     qq21             = iq2*jq1;
128     qq22             = iq2*jq2;
129
130     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
131     rcutoff          = fr->rcoulomb;
132     rcutoff2         = rcutoff*rcutoff;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142         shX              = shiftvec[i_shift_offset+XX];
143         shY              = shiftvec[i_shift_offset+YY];
144         shZ              = shiftvec[i_shift_offset+ZZ];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         ix0              = shX + x[i_coord_offset+DIM*0+XX];
156         iy0              = shY + x[i_coord_offset+DIM*0+YY];
157         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
158         ix1              = shX + x[i_coord_offset+DIM*1+XX];
159         iy1              = shY + x[i_coord_offset+DIM*1+YY];
160         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
161         ix2              = shX + x[i_coord_offset+DIM*2+XX];
162         iy2              = shY + x[i_coord_offset+DIM*2+YY];
163         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
164
165         fix0             = 0.0;
166         fiy0             = 0.0;
167         fiz0             = 0.0;
168         fix1             = 0.0;
169         fiy1             = 0.0;
170         fiz1             = 0.0;
171         fix2             = 0.0;
172         fiy2             = 0.0;
173         fiz2             = 0.0;
174
175         /* Reset potential sums */
176         velecsum         = 0.0;
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end; jidx++)
180         {
181             /* Get j neighbor index, and coordinate index */
182             jnr              = jjnr[jidx];
183             j_coord_offset   = DIM*jnr;
184
185             /* load j atom coordinates */
186             jx0              = x[j_coord_offset+DIM*0+XX];
187             jy0              = x[j_coord_offset+DIM*0+YY];
188             jz0              = x[j_coord_offset+DIM*0+ZZ];
189             jx1              = x[j_coord_offset+DIM*1+XX];
190             jy1              = x[j_coord_offset+DIM*1+YY];
191             jz1              = x[j_coord_offset+DIM*1+ZZ];
192             jx2              = x[j_coord_offset+DIM*2+XX];
193             jy2              = x[j_coord_offset+DIM*2+YY];
194             jz2              = x[j_coord_offset+DIM*2+ZZ];
195
196             /* Calculate displacement vector */
197             dx00             = ix0 - jx0;
198             dy00             = iy0 - jy0;
199             dz00             = iz0 - jz0;
200             dx01             = ix0 - jx1;
201             dy01             = iy0 - jy1;
202             dz01             = iz0 - jz1;
203             dx02             = ix0 - jx2;
204             dy02             = iy0 - jy2;
205             dz02             = iz0 - jz2;
206             dx10             = ix1 - jx0;
207             dy10             = iy1 - jy0;
208             dz10             = iz1 - jz0;
209             dx11             = ix1 - jx1;
210             dy11             = iy1 - jy1;
211             dz11             = iz1 - jz1;
212             dx12             = ix1 - jx2;
213             dy12             = iy1 - jy2;
214             dz12             = iz1 - jz2;
215             dx20             = ix2 - jx0;
216             dy20             = iy2 - jy0;
217             dz20             = iz2 - jz0;
218             dx21             = ix2 - jx1;
219             dy21             = iy2 - jy1;
220             dz21             = iz2 - jz1;
221             dx22             = ix2 - jx2;
222             dy22             = iy2 - jy2;
223             dz22             = iz2 - jz2;
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
227             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
228             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
229             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
230             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
231             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
232             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
233             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
234             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
235
236             rinv00           = gmx_invsqrt(rsq00);
237             rinv01           = gmx_invsqrt(rsq01);
238             rinv02           = gmx_invsqrt(rsq02);
239             rinv10           = gmx_invsqrt(rsq10);
240             rinv11           = gmx_invsqrt(rsq11);
241             rinv12           = gmx_invsqrt(rsq12);
242             rinv20           = gmx_invsqrt(rsq20);
243             rinv21           = gmx_invsqrt(rsq21);
244             rinv22           = gmx_invsqrt(rsq22);
245
246             rinvsq00         = rinv00*rinv00;
247             rinvsq01         = rinv01*rinv01;
248             rinvsq02         = rinv02*rinv02;
249             rinvsq10         = rinv10*rinv10;
250             rinvsq11         = rinv11*rinv11;
251             rinvsq12         = rinv12*rinv12;
252             rinvsq20         = rinv20*rinv20;
253             rinvsq21         = rinv21*rinv21;
254             rinvsq22         = rinv22*rinv22;
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (rsq00<rcutoff2)
261             {
262
263             /* REACTION-FIELD ELECTROSTATICS */
264             velec            = qq00*(rinv00+krf*rsq00-crf);
265             felec            = qq00*(rinv00*rinvsq00-krf2);
266
267             /* Update potential sums from outer loop */
268             velecsum        += velec;
269
270             fscal            = felec;
271
272             /* Calculate temporary vectorial force */
273             tx               = fscal*dx00;
274             ty               = fscal*dy00;
275             tz               = fscal*dz00;
276
277             /* Update vectorial force */
278             fix0            += tx;
279             fiy0            += ty;
280             fiz0            += tz;
281             f[j_coord_offset+DIM*0+XX] -= tx;
282             f[j_coord_offset+DIM*0+YY] -= ty;
283             f[j_coord_offset+DIM*0+ZZ] -= tz;
284
285             }
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             if (rsq01<rcutoff2)
292             {
293
294             /* REACTION-FIELD ELECTROSTATICS */
295             velec            = qq01*(rinv01+krf*rsq01-crf);
296             felec            = qq01*(rinv01*rinvsq01-krf2);
297
298             /* Update potential sums from outer loop */
299             velecsum        += velec;
300
301             fscal            = felec;
302
303             /* Calculate temporary vectorial force */
304             tx               = fscal*dx01;
305             ty               = fscal*dy01;
306             tz               = fscal*dz01;
307
308             /* Update vectorial force */
309             fix0            += tx;
310             fiy0            += ty;
311             fiz0            += tz;
312             f[j_coord_offset+DIM*1+XX] -= tx;
313             f[j_coord_offset+DIM*1+YY] -= ty;
314             f[j_coord_offset+DIM*1+ZZ] -= tz;
315
316             }
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             if (rsq02<rcutoff2)
323             {
324
325             /* REACTION-FIELD ELECTROSTATICS */
326             velec            = qq02*(rinv02+krf*rsq02-crf);
327             felec            = qq02*(rinv02*rinvsq02-krf2);
328
329             /* Update potential sums from outer loop */
330             velecsum        += velec;
331
332             fscal            = felec;
333
334             /* Calculate temporary vectorial force */
335             tx               = fscal*dx02;
336             ty               = fscal*dy02;
337             tz               = fscal*dz02;
338
339             /* Update vectorial force */
340             fix0            += tx;
341             fiy0            += ty;
342             fiz0            += tz;
343             f[j_coord_offset+DIM*2+XX] -= tx;
344             f[j_coord_offset+DIM*2+YY] -= ty;
345             f[j_coord_offset+DIM*2+ZZ] -= tz;
346
347             }
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             if (rsq10<rcutoff2)
354             {
355
356             /* REACTION-FIELD ELECTROSTATICS */
357             velec            = qq10*(rinv10+krf*rsq10-crf);
358             felec            = qq10*(rinv10*rinvsq10-krf2);
359
360             /* Update potential sums from outer loop */
361             velecsum        += velec;
362
363             fscal            = felec;
364
365             /* Calculate temporary vectorial force */
366             tx               = fscal*dx10;
367             ty               = fscal*dy10;
368             tz               = fscal*dz10;
369
370             /* Update vectorial force */
371             fix1            += tx;
372             fiy1            += ty;
373             fiz1            += tz;
374             f[j_coord_offset+DIM*0+XX] -= tx;
375             f[j_coord_offset+DIM*0+YY] -= ty;
376             f[j_coord_offset+DIM*0+ZZ] -= tz;
377
378             }
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             if (rsq11<rcutoff2)
385             {
386
387             /* REACTION-FIELD ELECTROSTATICS */
388             velec            = qq11*(rinv11+krf*rsq11-crf);
389             felec            = qq11*(rinv11*rinvsq11-krf2);
390
391             /* Update potential sums from outer loop */
392             velecsum        += velec;
393
394             fscal            = felec;
395
396             /* Calculate temporary vectorial force */
397             tx               = fscal*dx11;
398             ty               = fscal*dy11;
399             tz               = fscal*dz11;
400
401             /* Update vectorial force */
402             fix1            += tx;
403             fiy1            += ty;
404             fiz1            += tz;
405             f[j_coord_offset+DIM*1+XX] -= tx;
406             f[j_coord_offset+DIM*1+YY] -= ty;
407             f[j_coord_offset+DIM*1+ZZ] -= tz;
408
409             }
410
411             /**************************
412              * CALCULATE INTERACTIONS *
413              **************************/
414
415             if (rsq12<rcutoff2)
416             {
417
418             /* REACTION-FIELD ELECTROSTATICS */
419             velec            = qq12*(rinv12+krf*rsq12-crf);
420             felec            = qq12*(rinv12*rinvsq12-krf2);
421
422             /* Update potential sums from outer loop */
423             velecsum        += velec;
424
425             fscal            = felec;
426
427             /* Calculate temporary vectorial force */
428             tx               = fscal*dx12;
429             ty               = fscal*dy12;
430             tz               = fscal*dz12;
431
432             /* Update vectorial force */
433             fix1            += tx;
434             fiy1            += ty;
435             fiz1            += tz;
436             f[j_coord_offset+DIM*2+XX] -= tx;
437             f[j_coord_offset+DIM*2+YY] -= ty;
438             f[j_coord_offset+DIM*2+ZZ] -= tz;
439
440             }
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             if (rsq20<rcutoff2)
447             {
448
449             /* REACTION-FIELD ELECTROSTATICS */
450             velec            = qq20*(rinv20+krf*rsq20-crf);
451             felec            = qq20*(rinv20*rinvsq20-krf2);
452
453             /* Update potential sums from outer loop */
454             velecsum        += velec;
455
456             fscal            = felec;
457
458             /* Calculate temporary vectorial force */
459             tx               = fscal*dx20;
460             ty               = fscal*dy20;
461             tz               = fscal*dz20;
462
463             /* Update vectorial force */
464             fix2            += tx;
465             fiy2            += ty;
466             fiz2            += tz;
467             f[j_coord_offset+DIM*0+XX] -= tx;
468             f[j_coord_offset+DIM*0+YY] -= ty;
469             f[j_coord_offset+DIM*0+ZZ] -= tz;
470
471             }
472
473             /**************************
474              * CALCULATE INTERACTIONS *
475              **************************/
476
477             if (rsq21<rcutoff2)
478             {
479
480             /* REACTION-FIELD ELECTROSTATICS */
481             velec            = qq21*(rinv21+krf*rsq21-crf);
482             felec            = qq21*(rinv21*rinvsq21-krf2);
483
484             /* Update potential sums from outer loop */
485             velecsum        += velec;
486
487             fscal            = felec;
488
489             /* Calculate temporary vectorial force */
490             tx               = fscal*dx21;
491             ty               = fscal*dy21;
492             tz               = fscal*dz21;
493
494             /* Update vectorial force */
495             fix2            += tx;
496             fiy2            += ty;
497             fiz2            += tz;
498             f[j_coord_offset+DIM*1+XX] -= tx;
499             f[j_coord_offset+DIM*1+YY] -= ty;
500             f[j_coord_offset+DIM*1+ZZ] -= tz;
501
502             }
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             if (rsq22<rcutoff2)
509             {
510
511             /* REACTION-FIELD ELECTROSTATICS */
512             velec            = qq22*(rinv22+krf*rsq22-crf);
513             felec            = qq22*(rinv22*rinvsq22-krf2);
514
515             /* Update potential sums from outer loop */
516             velecsum        += velec;
517
518             fscal            = felec;
519
520             /* Calculate temporary vectorial force */
521             tx               = fscal*dx22;
522             ty               = fscal*dy22;
523             tz               = fscal*dz22;
524
525             /* Update vectorial force */
526             fix2            += tx;
527             fiy2            += ty;
528             fiz2            += tz;
529             f[j_coord_offset+DIM*2+XX] -= tx;
530             f[j_coord_offset+DIM*2+YY] -= ty;
531             f[j_coord_offset+DIM*2+ZZ] -= tz;
532
533             }
534
535             /* Inner loop uses 279 flops */
536         }
537         /* End of innermost loop */
538
539         tx = ty = tz = 0;
540         f[i_coord_offset+DIM*0+XX] += fix0;
541         f[i_coord_offset+DIM*0+YY] += fiy0;
542         f[i_coord_offset+DIM*0+ZZ] += fiz0;
543         tx                         += fix0;
544         ty                         += fiy0;
545         tz                         += fiz0;
546         f[i_coord_offset+DIM*1+XX] += fix1;
547         f[i_coord_offset+DIM*1+YY] += fiy1;
548         f[i_coord_offset+DIM*1+ZZ] += fiz1;
549         tx                         += fix1;
550         ty                         += fiy1;
551         tz                         += fiz1;
552         f[i_coord_offset+DIM*2+XX] += fix2;
553         f[i_coord_offset+DIM*2+YY] += fiy2;
554         f[i_coord_offset+DIM*2+ZZ] += fiz2;
555         tx                         += fix2;
556         ty                         += fiy2;
557         tz                         += fiz2;
558         fshift[i_shift_offset+XX]  += tx;
559         fshift[i_shift_offset+YY]  += ty;
560         fshift[i_shift_offset+ZZ]  += tz;
561
562         ggid                        = gid[iidx];
563         /* Update potential energies */
564         kernel_data->energygrp_elec[ggid] += velecsum;
565
566         /* Increment number of inner iterations */
567         inneriter                  += j_index_end - j_index_start;
568
569         /* Outer loop uses 31 flops */
570     }
571
572     /* Increment number of outer iterations */
573     outeriter        += nri;
574
575     /* Update outer/inner flops */
576
577     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*31 + inneriter*279);
578 }
579 /*
580  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3W3_F_c
581  * Electrostatics interaction: ReactionField
582  * VdW interaction:            None
583  * Geometry:                   Water3-Water3
584  * Calculate force/pot:        Force
585  */
586 void
587 nb_kernel_ElecRFCut_VdwNone_GeomW3W3_F_c
588                     (t_nblist                    * gmx_restrict       nlist,
589                      rvec                        * gmx_restrict          xx,
590                      rvec                        * gmx_restrict          ff,
591                      t_forcerec                  * gmx_restrict          fr,
592                      t_mdatoms                   * gmx_restrict     mdatoms,
593                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
594                      t_nrnb                      * gmx_restrict        nrnb)
595 {
596     int              i_shift_offset,i_coord_offset,j_coord_offset;
597     int              j_index_start,j_index_end;
598     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
599     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
600     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
601     real             *shiftvec,*fshift,*x,*f;
602     int              vdwioffset0;
603     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
604     int              vdwioffset1;
605     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
606     int              vdwioffset2;
607     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
608     int              vdwjidx0;
609     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
610     int              vdwjidx1;
611     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
612     int              vdwjidx2;
613     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
614     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
615     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
616     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
617     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
618     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
619     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
620     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
621     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
622     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
623     real             velec,felec,velecsum,facel,crf,krf,krf2;
624     real             *charge;
625
626     x                = xx[0];
627     f                = ff[0];
628
629     nri              = nlist->nri;
630     iinr             = nlist->iinr;
631     jindex           = nlist->jindex;
632     jjnr             = nlist->jjnr;
633     shiftidx         = nlist->shift;
634     gid              = nlist->gid;
635     shiftvec         = fr->shift_vec[0];
636     fshift           = fr->fshift[0];
637     facel            = fr->epsfac;
638     charge           = mdatoms->chargeA;
639     krf              = fr->ic->k_rf;
640     krf2             = krf*2.0;
641     crf              = fr->ic->c_rf;
642
643     /* Setup water-specific parameters */
644     inr              = nlist->iinr[0];
645     iq0              = facel*charge[inr+0];
646     iq1              = facel*charge[inr+1];
647     iq2              = facel*charge[inr+2];
648
649     jq0              = charge[inr+0];
650     jq1              = charge[inr+1];
651     jq2              = charge[inr+2];
652     qq00             = iq0*jq0;
653     qq01             = iq0*jq1;
654     qq02             = iq0*jq2;
655     qq10             = iq1*jq0;
656     qq11             = iq1*jq1;
657     qq12             = iq1*jq2;
658     qq20             = iq2*jq0;
659     qq21             = iq2*jq1;
660     qq22             = iq2*jq2;
661
662     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
663     rcutoff          = fr->rcoulomb;
664     rcutoff2         = rcutoff*rcutoff;
665
666     outeriter        = 0;
667     inneriter        = 0;
668
669     /* Start outer loop over neighborlists */
670     for(iidx=0; iidx<nri; iidx++)
671     {
672         /* Load shift vector for this list */
673         i_shift_offset   = DIM*shiftidx[iidx];
674         shX              = shiftvec[i_shift_offset+XX];
675         shY              = shiftvec[i_shift_offset+YY];
676         shZ              = shiftvec[i_shift_offset+ZZ];
677
678         /* Load limits for loop over neighbors */
679         j_index_start    = jindex[iidx];
680         j_index_end      = jindex[iidx+1];
681
682         /* Get outer coordinate index */
683         inr              = iinr[iidx];
684         i_coord_offset   = DIM*inr;
685
686         /* Load i particle coords and add shift vector */
687         ix0              = shX + x[i_coord_offset+DIM*0+XX];
688         iy0              = shY + x[i_coord_offset+DIM*0+YY];
689         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
690         ix1              = shX + x[i_coord_offset+DIM*1+XX];
691         iy1              = shY + x[i_coord_offset+DIM*1+YY];
692         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
693         ix2              = shX + x[i_coord_offset+DIM*2+XX];
694         iy2              = shY + x[i_coord_offset+DIM*2+YY];
695         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
696
697         fix0             = 0.0;
698         fiy0             = 0.0;
699         fiz0             = 0.0;
700         fix1             = 0.0;
701         fiy1             = 0.0;
702         fiz1             = 0.0;
703         fix2             = 0.0;
704         fiy2             = 0.0;
705         fiz2             = 0.0;
706
707         /* Start inner kernel loop */
708         for(jidx=j_index_start; jidx<j_index_end; jidx++)
709         {
710             /* Get j neighbor index, and coordinate index */
711             jnr              = jjnr[jidx];
712             j_coord_offset   = DIM*jnr;
713
714             /* load j atom coordinates */
715             jx0              = x[j_coord_offset+DIM*0+XX];
716             jy0              = x[j_coord_offset+DIM*0+YY];
717             jz0              = x[j_coord_offset+DIM*0+ZZ];
718             jx1              = x[j_coord_offset+DIM*1+XX];
719             jy1              = x[j_coord_offset+DIM*1+YY];
720             jz1              = x[j_coord_offset+DIM*1+ZZ];
721             jx2              = x[j_coord_offset+DIM*2+XX];
722             jy2              = x[j_coord_offset+DIM*2+YY];
723             jz2              = x[j_coord_offset+DIM*2+ZZ];
724
725             /* Calculate displacement vector */
726             dx00             = ix0 - jx0;
727             dy00             = iy0 - jy0;
728             dz00             = iz0 - jz0;
729             dx01             = ix0 - jx1;
730             dy01             = iy0 - jy1;
731             dz01             = iz0 - jz1;
732             dx02             = ix0 - jx2;
733             dy02             = iy0 - jy2;
734             dz02             = iz0 - jz2;
735             dx10             = ix1 - jx0;
736             dy10             = iy1 - jy0;
737             dz10             = iz1 - jz0;
738             dx11             = ix1 - jx1;
739             dy11             = iy1 - jy1;
740             dz11             = iz1 - jz1;
741             dx12             = ix1 - jx2;
742             dy12             = iy1 - jy2;
743             dz12             = iz1 - jz2;
744             dx20             = ix2 - jx0;
745             dy20             = iy2 - jy0;
746             dz20             = iz2 - jz0;
747             dx21             = ix2 - jx1;
748             dy21             = iy2 - jy1;
749             dz21             = iz2 - jz1;
750             dx22             = ix2 - jx2;
751             dy22             = iy2 - jy2;
752             dz22             = iz2 - jz2;
753
754             /* Calculate squared distance and things based on it */
755             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
756             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
757             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
758             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
759             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
760             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
761             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
762             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
763             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
764
765             rinv00           = gmx_invsqrt(rsq00);
766             rinv01           = gmx_invsqrt(rsq01);
767             rinv02           = gmx_invsqrt(rsq02);
768             rinv10           = gmx_invsqrt(rsq10);
769             rinv11           = gmx_invsqrt(rsq11);
770             rinv12           = gmx_invsqrt(rsq12);
771             rinv20           = gmx_invsqrt(rsq20);
772             rinv21           = gmx_invsqrt(rsq21);
773             rinv22           = gmx_invsqrt(rsq22);
774
775             rinvsq00         = rinv00*rinv00;
776             rinvsq01         = rinv01*rinv01;
777             rinvsq02         = rinv02*rinv02;
778             rinvsq10         = rinv10*rinv10;
779             rinvsq11         = rinv11*rinv11;
780             rinvsq12         = rinv12*rinv12;
781             rinvsq20         = rinv20*rinv20;
782             rinvsq21         = rinv21*rinv21;
783             rinvsq22         = rinv22*rinv22;
784
785             /**************************
786              * CALCULATE INTERACTIONS *
787              **************************/
788
789             if (rsq00<rcutoff2)
790             {
791
792             /* REACTION-FIELD ELECTROSTATICS */
793             felec            = qq00*(rinv00*rinvsq00-krf2);
794
795             fscal            = felec;
796
797             /* Calculate temporary vectorial force */
798             tx               = fscal*dx00;
799             ty               = fscal*dy00;
800             tz               = fscal*dz00;
801
802             /* Update vectorial force */
803             fix0            += tx;
804             fiy0            += ty;
805             fiz0            += tz;
806             f[j_coord_offset+DIM*0+XX] -= tx;
807             f[j_coord_offset+DIM*0+YY] -= ty;
808             f[j_coord_offset+DIM*0+ZZ] -= tz;
809
810             }
811
812             /**************************
813              * CALCULATE INTERACTIONS *
814              **************************/
815
816             if (rsq01<rcutoff2)
817             {
818
819             /* REACTION-FIELD ELECTROSTATICS */
820             felec            = qq01*(rinv01*rinvsq01-krf2);
821
822             fscal            = felec;
823
824             /* Calculate temporary vectorial force */
825             tx               = fscal*dx01;
826             ty               = fscal*dy01;
827             tz               = fscal*dz01;
828
829             /* Update vectorial force */
830             fix0            += tx;
831             fiy0            += ty;
832             fiz0            += tz;
833             f[j_coord_offset+DIM*1+XX] -= tx;
834             f[j_coord_offset+DIM*1+YY] -= ty;
835             f[j_coord_offset+DIM*1+ZZ] -= tz;
836
837             }
838
839             /**************************
840              * CALCULATE INTERACTIONS *
841              **************************/
842
843             if (rsq02<rcutoff2)
844             {
845
846             /* REACTION-FIELD ELECTROSTATICS */
847             felec            = qq02*(rinv02*rinvsq02-krf2);
848
849             fscal            = felec;
850
851             /* Calculate temporary vectorial force */
852             tx               = fscal*dx02;
853             ty               = fscal*dy02;
854             tz               = fscal*dz02;
855
856             /* Update vectorial force */
857             fix0            += tx;
858             fiy0            += ty;
859             fiz0            += tz;
860             f[j_coord_offset+DIM*2+XX] -= tx;
861             f[j_coord_offset+DIM*2+YY] -= ty;
862             f[j_coord_offset+DIM*2+ZZ] -= tz;
863
864             }
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             if (rsq10<rcutoff2)
871             {
872
873             /* REACTION-FIELD ELECTROSTATICS */
874             felec            = qq10*(rinv10*rinvsq10-krf2);
875
876             fscal            = felec;
877
878             /* Calculate temporary vectorial force */
879             tx               = fscal*dx10;
880             ty               = fscal*dy10;
881             tz               = fscal*dz10;
882
883             /* Update vectorial force */
884             fix1            += tx;
885             fiy1            += ty;
886             fiz1            += tz;
887             f[j_coord_offset+DIM*0+XX] -= tx;
888             f[j_coord_offset+DIM*0+YY] -= ty;
889             f[j_coord_offset+DIM*0+ZZ] -= tz;
890
891             }
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             if (rsq11<rcutoff2)
898             {
899
900             /* REACTION-FIELD ELECTROSTATICS */
901             felec            = qq11*(rinv11*rinvsq11-krf2);
902
903             fscal            = felec;
904
905             /* Calculate temporary vectorial force */
906             tx               = fscal*dx11;
907             ty               = fscal*dy11;
908             tz               = fscal*dz11;
909
910             /* Update vectorial force */
911             fix1            += tx;
912             fiy1            += ty;
913             fiz1            += tz;
914             f[j_coord_offset+DIM*1+XX] -= tx;
915             f[j_coord_offset+DIM*1+YY] -= ty;
916             f[j_coord_offset+DIM*1+ZZ] -= tz;
917
918             }
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             if (rsq12<rcutoff2)
925             {
926
927             /* REACTION-FIELD ELECTROSTATICS */
928             felec            = qq12*(rinv12*rinvsq12-krf2);
929
930             fscal            = felec;
931
932             /* Calculate temporary vectorial force */
933             tx               = fscal*dx12;
934             ty               = fscal*dy12;
935             tz               = fscal*dz12;
936
937             /* Update vectorial force */
938             fix1            += tx;
939             fiy1            += ty;
940             fiz1            += tz;
941             f[j_coord_offset+DIM*2+XX] -= tx;
942             f[j_coord_offset+DIM*2+YY] -= ty;
943             f[j_coord_offset+DIM*2+ZZ] -= tz;
944
945             }
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             if (rsq20<rcutoff2)
952             {
953
954             /* REACTION-FIELD ELECTROSTATICS */
955             felec            = qq20*(rinv20*rinvsq20-krf2);
956
957             fscal            = felec;
958
959             /* Calculate temporary vectorial force */
960             tx               = fscal*dx20;
961             ty               = fscal*dy20;
962             tz               = fscal*dz20;
963
964             /* Update vectorial force */
965             fix2            += tx;
966             fiy2            += ty;
967             fiz2            += tz;
968             f[j_coord_offset+DIM*0+XX] -= tx;
969             f[j_coord_offset+DIM*0+YY] -= ty;
970             f[j_coord_offset+DIM*0+ZZ] -= tz;
971
972             }
973
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             if (rsq21<rcutoff2)
979             {
980
981             /* REACTION-FIELD ELECTROSTATICS */
982             felec            = qq21*(rinv21*rinvsq21-krf2);
983
984             fscal            = felec;
985
986             /* Calculate temporary vectorial force */
987             tx               = fscal*dx21;
988             ty               = fscal*dy21;
989             tz               = fscal*dz21;
990
991             /* Update vectorial force */
992             fix2            += tx;
993             fiy2            += ty;
994             fiz2            += tz;
995             f[j_coord_offset+DIM*1+XX] -= tx;
996             f[j_coord_offset+DIM*1+YY] -= ty;
997             f[j_coord_offset+DIM*1+ZZ] -= tz;
998
999             }
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             if (rsq22<rcutoff2)
1006             {
1007
1008             /* REACTION-FIELD ELECTROSTATICS */
1009             felec            = qq22*(rinv22*rinvsq22-krf2);
1010
1011             fscal            = felec;
1012
1013             /* Calculate temporary vectorial force */
1014             tx               = fscal*dx22;
1015             ty               = fscal*dy22;
1016             tz               = fscal*dz22;
1017
1018             /* Update vectorial force */
1019             fix2            += tx;
1020             fiy2            += ty;
1021             fiz2            += tz;
1022             f[j_coord_offset+DIM*2+XX] -= tx;
1023             f[j_coord_offset+DIM*2+YY] -= ty;
1024             f[j_coord_offset+DIM*2+ZZ] -= tz;
1025
1026             }
1027
1028             /* Inner loop uses 234 flops */
1029         }
1030         /* End of innermost loop */
1031
1032         tx = ty = tz = 0;
1033         f[i_coord_offset+DIM*0+XX] += fix0;
1034         f[i_coord_offset+DIM*0+YY] += fiy0;
1035         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1036         tx                         += fix0;
1037         ty                         += fiy0;
1038         tz                         += fiz0;
1039         f[i_coord_offset+DIM*1+XX] += fix1;
1040         f[i_coord_offset+DIM*1+YY] += fiy1;
1041         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1042         tx                         += fix1;
1043         ty                         += fiy1;
1044         tz                         += fiz1;
1045         f[i_coord_offset+DIM*2+XX] += fix2;
1046         f[i_coord_offset+DIM*2+YY] += fiy2;
1047         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1048         tx                         += fix2;
1049         ty                         += fiy2;
1050         tz                         += fiz2;
1051         fshift[i_shift_offset+XX]  += tx;
1052         fshift[i_shift_offset+YY]  += ty;
1053         fshift[i_shift_offset+ZZ]  += tz;
1054
1055         /* Increment number of inner iterations */
1056         inneriter                  += j_index_end - j_index_start;
1057
1058         /* Outer loop uses 30 flops */
1059     }
1060
1061     /* Increment number of outer iterations */
1062     outeriter        += nri;
1063
1064     /* Update outer/inner flops */
1065
1066     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*30 + inneriter*234);
1067 }