Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwNone_GeomW3W3_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3W3_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            None
53  * Geometry:                   Water3-Water3
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwNone_GeomW3W3_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     int              vdwjidx1;
81     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82     int              vdwjidx2;
83     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93     real             velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = fr->epsfac;
108     charge           = mdatoms->chargeA;
109     krf              = fr->ic->k_rf;
110     krf2             = krf*2.0;
111     crf              = fr->ic->c_rf;
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = facel*charge[inr+0];
116     iq1              = facel*charge[inr+1];
117     iq2              = facel*charge[inr+2];
118
119     jq0              = charge[inr+0];
120     jq1              = charge[inr+1];
121     jq2              = charge[inr+2];
122     qq00             = iq0*jq0;
123     qq01             = iq0*jq1;
124     qq02             = iq0*jq2;
125     qq10             = iq1*jq0;
126     qq11             = iq1*jq1;
127     qq12             = iq1*jq2;
128     qq20             = iq2*jq0;
129     qq21             = iq2*jq1;
130     qq22             = iq2*jq2;
131
132     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133     rcutoff          = fr->rcoulomb;
134     rcutoff2         = rcutoff*rcutoff;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144         shX              = shiftvec[i_shift_offset+XX];
145         shY              = shiftvec[i_shift_offset+YY];
146         shZ              = shiftvec[i_shift_offset+ZZ];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         ix0              = shX + x[i_coord_offset+DIM*0+XX];
158         iy0              = shY + x[i_coord_offset+DIM*0+YY];
159         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
160         ix1              = shX + x[i_coord_offset+DIM*1+XX];
161         iy1              = shY + x[i_coord_offset+DIM*1+YY];
162         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
163         ix2              = shX + x[i_coord_offset+DIM*2+XX];
164         iy2              = shY + x[i_coord_offset+DIM*2+YY];
165         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
166
167         fix0             = 0.0;
168         fiy0             = 0.0;
169         fiz0             = 0.0;
170         fix1             = 0.0;
171         fiy1             = 0.0;
172         fiz1             = 0.0;
173         fix2             = 0.0;
174         fiy2             = 0.0;
175         fiz2             = 0.0;
176
177         /* Reset potential sums */
178         velecsum         = 0.0;
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end; jidx++)
182         {
183             /* Get j neighbor index, and coordinate index */
184             jnr              = jjnr[jidx];
185             j_coord_offset   = DIM*jnr;
186
187             /* load j atom coordinates */
188             jx0              = x[j_coord_offset+DIM*0+XX];
189             jy0              = x[j_coord_offset+DIM*0+YY];
190             jz0              = x[j_coord_offset+DIM*0+ZZ];
191             jx1              = x[j_coord_offset+DIM*1+XX];
192             jy1              = x[j_coord_offset+DIM*1+YY];
193             jz1              = x[j_coord_offset+DIM*1+ZZ];
194             jx2              = x[j_coord_offset+DIM*2+XX];
195             jy2              = x[j_coord_offset+DIM*2+YY];
196             jz2              = x[j_coord_offset+DIM*2+ZZ];
197
198             /* Calculate displacement vector */
199             dx00             = ix0 - jx0;
200             dy00             = iy0 - jy0;
201             dz00             = iz0 - jz0;
202             dx01             = ix0 - jx1;
203             dy01             = iy0 - jy1;
204             dz01             = iz0 - jz1;
205             dx02             = ix0 - jx2;
206             dy02             = iy0 - jy2;
207             dz02             = iz0 - jz2;
208             dx10             = ix1 - jx0;
209             dy10             = iy1 - jy0;
210             dz10             = iz1 - jz0;
211             dx11             = ix1 - jx1;
212             dy11             = iy1 - jy1;
213             dz11             = iz1 - jz1;
214             dx12             = ix1 - jx2;
215             dy12             = iy1 - jy2;
216             dz12             = iz1 - jz2;
217             dx20             = ix2 - jx0;
218             dy20             = iy2 - jy0;
219             dz20             = iz2 - jz0;
220             dx21             = ix2 - jx1;
221             dy21             = iy2 - jy1;
222             dz21             = iz2 - jz1;
223             dx22             = ix2 - jx2;
224             dy22             = iy2 - jy2;
225             dz22             = iz2 - jz2;
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
229             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
230             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
231             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
232             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
233             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
234             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
235             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
236             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
237
238             rinv00           = gmx_invsqrt(rsq00);
239             rinv01           = gmx_invsqrt(rsq01);
240             rinv02           = gmx_invsqrt(rsq02);
241             rinv10           = gmx_invsqrt(rsq10);
242             rinv11           = gmx_invsqrt(rsq11);
243             rinv12           = gmx_invsqrt(rsq12);
244             rinv20           = gmx_invsqrt(rsq20);
245             rinv21           = gmx_invsqrt(rsq21);
246             rinv22           = gmx_invsqrt(rsq22);
247
248             rinvsq00         = rinv00*rinv00;
249             rinvsq01         = rinv01*rinv01;
250             rinvsq02         = rinv02*rinv02;
251             rinvsq10         = rinv10*rinv10;
252             rinvsq11         = rinv11*rinv11;
253             rinvsq12         = rinv12*rinv12;
254             rinvsq20         = rinv20*rinv20;
255             rinvsq21         = rinv21*rinv21;
256             rinvsq22         = rinv22*rinv22;
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             if (rsq00<rcutoff2)
263             {
264
265             /* REACTION-FIELD ELECTROSTATICS */
266             velec            = qq00*(rinv00+krf*rsq00-crf);
267             felec            = qq00*(rinv00*rinvsq00-krf2);
268
269             /* Update potential sums from outer loop */
270             velecsum        += velec;
271
272             fscal            = felec;
273
274             /* Calculate temporary vectorial force */
275             tx               = fscal*dx00;
276             ty               = fscal*dy00;
277             tz               = fscal*dz00;
278
279             /* Update vectorial force */
280             fix0            += tx;
281             fiy0            += ty;
282             fiz0            += tz;
283             f[j_coord_offset+DIM*0+XX] -= tx;
284             f[j_coord_offset+DIM*0+YY] -= ty;
285             f[j_coord_offset+DIM*0+ZZ] -= tz;
286
287             }
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             if (rsq01<rcutoff2)
294             {
295
296             /* REACTION-FIELD ELECTROSTATICS */
297             velec            = qq01*(rinv01+krf*rsq01-crf);
298             felec            = qq01*(rinv01*rinvsq01-krf2);
299
300             /* Update potential sums from outer loop */
301             velecsum        += velec;
302
303             fscal            = felec;
304
305             /* Calculate temporary vectorial force */
306             tx               = fscal*dx01;
307             ty               = fscal*dy01;
308             tz               = fscal*dz01;
309
310             /* Update vectorial force */
311             fix0            += tx;
312             fiy0            += ty;
313             fiz0            += tz;
314             f[j_coord_offset+DIM*1+XX] -= tx;
315             f[j_coord_offset+DIM*1+YY] -= ty;
316             f[j_coord_offset+DIM*1+ZZ] -= tz;
317
318             }
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (rsq02<rcutoff2)
325             {
326
327             /* REACTION-FIELD ELECTROSTATICS */
328             velec            = qq02*(rinv02+krf*rsq02-crf);
329             felec            = qq02*(rinv02*rinvsq02-krf2);
330
331             /* Update potential sums from outer loop */
332             velecsum        += velec;
333
334             fscal            = felec;
335
336             /* Calculate temporary vectorial force */
337             tx               = fscal*dx02;
338             ty               = fscal*dy02;
339             tz               = fscal*dz02;
340
341             /* Update vectorial force */
342             fix0            += tx;
343             fiy0            += ty;
344             fiz0            += tz;
345             f[j_coord_offset+DIM*2+XX] -= tx;
346             f[j_coord_offset+DIM*2+YY] -= ty;
347             f[j_coord_offset+DIM*2+ZZ] -= tz;
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (rsq10<rcutoff2)
356             {
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = qq10*(rinv10+krf*rsq10-crf);
360             felec            = qq10*(rinv10*rinvsq10-krf2);
361
362             /* Update potential sums from outer loop */
363             velecsum        += velec;
364
365             fscal            = felec;
366
367             /* Calculate temporary vectorial force */
368             tx               = fscal*dx10;
369             ty               = fscal*dy10;
370             tz               = fscal*dz10;
371
372             /* Update vectorial force */
373             fix1            += tx;
374             fiy1            += ty;
375             fiz1            += tz;
376             f[j_coord_offset+DIM*0+XX] -= tx;
377             f[j_coord_offset+DIM*0+YY] -= ty;
378             f[j_coord_offset+DIM*0+ZZ] -= tz;
379
380             }
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             if (rsq11<rcutoff2)
387             {
388
389             /* REACTION-FIELD ELECTROSTATICS */
390             velec            = qq11*(rinv11+krf*rsq11-crf);
391             felec            = qq11*(rinv11*rinvsq11-krf2);
392
393             /* Update potential sums from outer loop */
394             velecsum        += velec;
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = fscal*dx11;
400             ty               = fscal*dy11;
401             tz               = fscal*dz11;
402
403             /* Update vectorial force */
404             fix1            += tx;
405             fiy1            += ty;
406             fiz1            += tz;
407             f[j_coord_offset+DIM*1+XX] -= tx;
408             f[j_coord_offset+DIM*1+YY] -= ty;
409             f[j_coord_offset+DIM*1+ZZ] -= tz;
410
411             }
412
413             /**************************
414              * CALCULATE INTERACTIONS *
415              **************************/
416
417             if (rsq12<rcutoff2)
418             {
419
420             /* REACTION-FIELD ELECTROSTATICS */
421             velec            = qq12*(rinv12+krf*rsq12-crf);
422             felec            = qq12*(rinv12*rinvsq12-krf2);
423
424             /* Update potential sums from outer loop */
425             velecsum        += velec;
426
427             fscal            = felec;
428
429             /* Calculate temporary vectorial force */
430             tx               = fscal*dx12;
431             ty               = fscal*dy12;
432             tz               = fscal*dz12;
433
434             /* Update vectorial force */
435             fix1            += tx;
436             fiy1            += ty;
437             fiz1            += tz;
438             f[j_coord_offset+DIM*2+XX] -= tx;
439             f[j_coord_offset+DIM*2+YY] -= ty;
440             f[j_coord_offset+DIM*2+ZZ] -= tz;
441
442             }
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             if (rsq20<rcutoff2)
449             {
450
451             /* REACTION-FIELD ELECTROSTATICS */
452             velec            = qq20*(rinv20+krf*rsq20-crf);
453             felec            = qq20*(rinv20*rinvsq20-krf2);
454
455             /* Update potential sums from outer loop */
456             velecsum        += velec;
457
458             fscal            = felec;
459
460             /* Calculate temporary vectorial force */
461             tx               = fscal*dx20;
462             ty               = fscal*dy20;
463             tz               = fscal*dz20;
464
465             /* Update vectorial force */
466             fix2            += tx;
467             fiy2            += ty;
468             fiz2            += tz;
469             f[j_coord_offset+DIM*0+XX] -= tx;
470             f[j_coord_offset+DIM*0+YY] -= ty;
471             f[j_coord_offset+DIM*0+ZZ] -= tz;
472
473             }
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             if (rsq21<rcutoff2)
480             {
481
482             /* REACTION-FIELD ELECTROSTATICS */
483             velec            = qq21*(rinv21+krf*rsq21-crf);
484             felec            = qq21*(rinv21*rinvsq21-krf2);
485
486             /* Update potential sums from outer loop */
487             velecsum        += velec;
488
489             fscal            = felec;
490
491             /* Calculate temporary vectorial force */
492             tx               = fscal*dx21;
493             ty               = fscal*dy21;
494             tz               = fscal*dz21;
495
496             /* Update vectorial force */
497             fix2            += tx;
498             fiy2            += ty;
499             fiz2            += tz;
500             f[j_coord_offset+DIM*1+XX] -= tx;
501             f[j_coord_offset+DIM*1+YY] -= ty;
502             f[j_coord_offset+DIM*1+ZZ] -= tz;
503
504             }
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             if (rsq22<rcutoff2)
511             {
512
513             /* REACTION-FIELD ELECTROSTATICS */
514             velec            = qq22*(rinv22+krf*rsq22-crf);
515             felec            = qq22*(rinv22*rinvsq22-krf2);
516
517             /* Update potential sums from outer loop */
518             velecsum        += velec;
519
520             fscal            = felec;
521
522             /* Calculate temporary vectorial force */
523             tx               = fscal*dx22;
524             ty               = fscal*dy22;
525             tz               = fscal*dz22;
526
527             /* Update vectorial force */
528             fix2            += tx;
529             fiy2            += ty;
530             fiz2            += tz;
531             f[j_coord_offset+DIM*2+XX] -= tx;
532             f[j_coord_offset+DIM*2+YY] -= ty;
533             f[j_coord_offset+DIM*2+ZZ] -= tz;
534
535             }
536
537             /* Inner loop uses 279 flops */
538         }
539         /* End of innermost loop */
540
541         tx = ty = tz = 0;
542         f[i_coord_offset+DIM*0+XX] += fix0;
543         f[i_coord_offset+DIM*0+YY] += fiy0;
544         f[i_coord_offset+DIM*0+ZZ] += fiz0;
545         tx                         += fix0;
546         ty                         += fiy0;
547         tz                         += fiz0;
548         f[i_coord_offset+DIM*1+XX] += fix1;
549         f[i_coord_offset+DIM*1+YY] += fiy1;
550         f[i_coord_offset+DIM*1+ZZ] += fiz1;
551         tx                         += fix1;
552         ty                         += fiy1;
553         tz                         += fiz1;
554         f[i_coord_offset+DIM*2+XX] += fix2;
555         f[i_coord_offset+DIM*2+YY] += fiy2;
556         f[i_coord_offset+DIM*2+ZZ] += fiz2;
557         tx                         += fix2;
558         ty                         += fiy2;
559         tz                         += fiz2;
560         fshift[i_shift_offset+XX]  += tx;
561         fshift[i_shift_offset+YY]  += ty;
562         fshift[i_shift_offset+ZZ]  += tz;
563
564         ggid                        = gid[iidx];
565         /* Update potential energies */
566         kernel_data->energygrp_elec[ggid] += velecsum;
567
568         /* Increment number of inner iterations */
569         inneriter                  += j_index_end - j_index_start;
570
571         /* Outer loop uses 31 flops */
572     }
573
574     /* Increment number of outer iterations */
575     outeriter        += nri;
576
577     /* Update outer/inner flops */
578
579     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*31 + inneriter*279);
580 }
581 /*
582  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3W3_F_c
583  * Electrostatics interaction: ReactionField
584  * VdW interaction:            None
585  * Geometry:                   Water3-Water3
586  * Calculate force/pot:        Force
587  */
588 void
589 nb_kernel_ElecRFCut_VdwNone_GeomW3W3_F_c
590                     (t_nblist                    * gmx_restrict       nlist,
591                      rvec                        * gmx_restrict          xx,
592                      rvec                        * gmx_restrict          ff,
593                      t_forcerec                  * gmx_restrict          fr,
594                      t_mdatoms                   * gmx_restrict     mdatoms,
595                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
596                      t_nrnb                      * gmx_restrict        nrnb)
597 {
598     int              i_shift_offset,i_coord_offset,j_coord_offset;
599     int              j_index_start,j_index_end;
600     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
601     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
602     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
603     real             *shiftvec,*fshift,*x,*f;
604     int              vdwioffset0;
605     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
606     int              vdwioffset1;
607     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
608     int              vdwioffset2;
609     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
610     int              vdwjidx0;
611     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
612     int              vdwjidx1;
613     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
614     int              vdwjidx2;
615     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
616     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
617     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
618     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
619     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
620     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
621     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
622     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
623     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
624     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
625     real             velec,felec,velecsum,facel,crf,krf,krf2;
626     real             *charge;
627
628     x                = xx[0];
629     f                = ff[0];
630
631     nri              = nlist->nri;
632     iinr             = nlist->iinr;
633     jindex           = nlist->jindex;
634     jjnr             = nlist->jjnr;
635     shiftidx         = nlist->shift;
636     gid              = nlist->gid;
637     shiftvec         = fr->shift_vec[0];
638     fshift           = fr->fshift[0];
639     facel            = fr->epsfac;
640     charge           = mdatoms->chargeA;
641     krf              = fr->ic->k_rf;
642     krf2             = krf*2.0;
643     crf              = fr->ic->c_rf;
644
645     /* Setup water-specific parameters */
646     inr              = nlist->iinr[0];
647     iq0              = facel*charge[inr+0];
648     iq1              = facel*charge[inr+1];
649     iq2              = facel*charge[inr+2];
650
651     jq0              = charge[inr+0];
652     jq1              = charge[inr+1];
653     jq2              = charge[inr+2];
654     qq00             = iq0*jq0;
655     qq01             = iq0*jq1;
656     qq02             = iq0*jq2;
657     qq10             = iq1*jq0;
658     qq11             = iq1*jq1;
659     qq12             = iq1*jq2;
660     qq20             = iq2*jq0;
661     qq21             = iq2*jq1;
662     qq22             = iq2*jq2;
663
664     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
665     rcutoff          = fr->rcoulomb;
666     rcutoff2         = rcutoff*rcutoff;
667
668     outeriter        = 0;
669     inneriter        = 0;
670
671     /* Start outer loop over neighborlists */
672     for(iidx=0; iidx<nri; iidx++)
673     {
674         /* Load shift vector for this list */
675         i_shift_offset   = DIM*shiftidx[iidx];
676         shX              = shiftvec[i_shift_offset+XX];
677         shY              = shiftvec[i_shift_offset+YY];
678         shZ              = shiftvec[i_shift_offset+ZZ];
679
680         /* Load limits for loop over neighbors */
681         j_index_start    = jindex[iidx];
682         j_index_end      = jindex[iidx+1];
683
684         /* Get outer coordinate index */
685         inr              = iinr[iidx];
686         i_coord_offset   = DIM*inr;
687
688         /* Load i particle coords and add shift vector */
689         ix0              = shX + x[i_coord_offset+DIM*0+XX];
690         iy0              = shY + x[i_coord_offset+DIM*0+YY];
691         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
692         ix1              = shX + x[i_coord_offset+DIM*1+XX];
693         iy1              = shY + x[i_coord_offset+DIM*1+YY];
694         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
695         ix2              = shX + x[i_coord_offset+DIM*2+XX];
696         iy2              = shY + x[i_coord_offset+DIM*2+YY];
697         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
698
699         fix0             = 0.0;
700         fiy0             = 0.0;
701         fiz0             = 0.0;
702         fix1             = 0.0;
703         fiy1             = 0.0;
704         fiz1             = 0.0;
705         fix2             = 0.0;
706         fiy2             = 0.0;
707         fiz2             = 0.0;
708
709         /* Start inner kernel loop */
710         for(jidx=j_index_start; jidx<j_index_end; jidx++)
711         {
712             /* Get j neighbor index, and coordinate index */
713             jnr              = jjnr[jidx];
714             j_coord_offset   = DIM*jnr;
715
716             /* load j atom coordinates */
717             jx0              = x[j_coord_offset+DIM*0+XX];
718             jy0              = x[j_coord_offset+DIM*0+YY];
719             jz0              = x[j_coord_offset+DIM*0+ZZ];
720             jx1              = x[j_coord_offset+DIM*1+XX];
721             jy1              = x[j_coord_offset+DIM*1+YY];
722             jz1              = x[j_coord_offset+DIM*1+ZZ];
723             jx2              = x[j_coord_offset+DIM*2+XX];
724             jy2              = x[j_coord_offset+DIM*2+YY];
725             jz2              = x[j_coord_offset+DIM*2+ZZ];
726
727             /* Calculate displacement vector */
728             dx00             = ix0 - jx0;
729             dy00             = iy0 - jy0;
730             dz00             = iz0 - jz0;
731             dx01             = ix0 - jx1;
732             dy01             = iy0 - jy1;
733             dz01             = iz0 - jz1;
734             dx02             = ix0 - jx2;
735             dy02             = iy0 - jy2;
736             dz02             = iz0 - jz2;
737             dx10             = ix1 - jx0;
738             dy10             = iy1 - jy0;
739             dz10             = iz1 - jz0;
740             dx11             = ix1 - jx1;
741             dy11             = iy1 - jy1;
742             dz11             = iz1 - jz1;
743             dx12             = ix1 - jx2;
744             dy12             = iy1 - jy2;
745             dz12             = iz1 - jz2;
746             dx20             = ix2 - jx0;
747             dy20             = iy2 - jy0;
748             dz20             = iz2 - jz0;
749             dx21             = ix2 - jx1;
750             dy21             = iy2 - jy1;
751             dz21             = iz2 - jz1;
752             dx22             = ix2 - jx2;
753             dy22             = iy2 - jy2;
754             dz22             = iz2 - jz2;
755
756             /* Calculate squared distance and things based on it */
757             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
758             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
759             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
760             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
761             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
762             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
763             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
764             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
765             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
766
767             rinv00           = gmx_invsqrt(rsq00);
768             rinv01           = gmx_invsqrt(rsq01);
769             rinv02           = gmx_invsqrt(rsq02);
770             rinv10           = gmx_invsqrt(rsq10);
771             rinv11           = gmx_invsqrt(rsq11);
772             rinv12           = gmx_invsqrt(rsq12);
773             rinv20           = gmx_invsqrt(rsq20);
774             rinv21           = gmx_invsqrt(rsq21);
775             rinv22           = gmx_invsqrt(rsq22);
776
777             rinvsq00         = rinv00*rinv00;
778             rinvsq01         = rinv01*rinv01;
779             rinvsq02         = rinv02*rinv02;
780             rinvsq10         = rinv10*rinv10;
781             rinvsq11         = rinv11*rinv11;
782             rinvsq12         = rinv12*rinv12;
783             rinvsq20         = rinv20*rinv20;
784             rinvsq21         = rinv21*rinv21;
785             rinvsq22         = rinv22*rinv22;
786
787             /**************************
788              * CALCULATE INTERACTIONS *
789              **************************/
790
791             if (rsq00<rcutoff2)
792             {
793
794             /* REACTION-FIELD ELECTROSTATICS */
795             felec            = qq00*(rinv00*rinvsq00-krf2);
796
797             fscal            = felec;
798
799             /* Calculate temporary vectorial force */
800             tx               = fscal*dx00;
801             ty               = fscal*dy00;
802             tz               = fscal*dz00;
803
804             /* Update vectorial force */
805             fix0            += tx;
806             fiy0            += ty;
807             fiz0            += tz;
808             f[j_coord_offset+DIM*0+XX] -= tx;
809             f[j_coord_offset+DIM*0+YY] -= ty;
810             f[j_coord_offset+DIM*0+ZZ] -= tz;
811
812             }
813
814             /**************************
815              * CALCULATE INTERACTIONS *
816              **************************/
817
818             if (rsq01<rcutoff2)
819             {
820
821             /* REACTION-FIELD ELECTROSTATICS */
822             felec            = qq01*(rinv01*rinvsq01-krf2);
823
824             fscal            = felec;
825
826             /* Calculate temporary vectorial force */
827             tx               = fscal*dx01;
828             ty               = fscal*dy01;
829             tz               = fscal*dz01;
830
831             /* Update vectorial force */
832             fix0            += tx;
833             fiy0            += ty;
834             fiz0            += tz;
835             f[j_coord_offset+DIM*1+XX] -= tx;
836             f[j_coord_offset+DIM*1+YY] -= ty;
837             f[j_coord_offset+DIM*1+ZZ] -= tz;
838
839             }
840
841             /**************************
842              * CALCULATE INTERACTIONS *
843              **************************/
844
845             if (rsq02<rcutoff2)
846             {
847
848             /* REACTION-FIELD ELECTROSTATICS */
849             felec            = qq02*(rinv02*rinvsq02-krf2);
850
851             fscal            = felec;
852
853             /* Calculate temporary vectorial force */
854             tx               = fscal*dx02;
855             ty               = fscal*dy02;
856             tz               = fscal*dz02;
857
858             /* Update vectorial force */
859             fix0            += tx;
860             fiy0            += ty;
861             fiz0            += tz;
862             f[j_coord_offset+DIM*2+XX] -= tx;
863             f[j_coord_offset+DIM*2+YY] -= ty;
864             f[j_coord_offset+DIM*2+ZZ] -= tz;
865
866             }
867
868             /**************************
869              * CALCULATE INTERACTIONS *
870              **************************/
871
872             if (rsq10<rcutoff2)
873             {
874
875             /* REACTION-FIELD ELECTROSTATICS */
876             felec            = qq10*(rinv10*rinvsq10-krf2);
877
878             fscal            = felec;
879
880             /* Calculate temporary vectorial force */
881             tx               = fscal*dx10;
882             ty               = fscal*dy10;
883             tz               = fscal*dz10;
884
885             /* Update vectorial force */
886             fix1            += tx;
887             fiy1            += ty;
888             fiz1            += tz;
889             f[j_coord_offset+DIM*0+XX] -= tx;
890             f[j_coord_offset+DIM*0+YY] -= ty;
891             f[j_coord_offset+DIM*0+ZZ] -= tz;
892
893             }
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             if (rsq11<rcutoff2)
900             {
901
902             /* REACTION-FIELD ELECTROSTATICS */
903             felec            = qq11*(rinv11*rinvsq11-krf2);
904
905             fscal            = felec;
906
907             /* Calculate temporary vectorial force */
908             tx               = fscal*dx11;
909             ty               = fscal*dy11;
910             tz               = fscal*dz11;
911
912             /* Update vectorial force */
913             fix1            += tx;
914             fiy1            += ty;
915             fiz1            += tz;
916             f[j_coord_offset+DIM*1+XX] -= tx;
917             f[j_coord_offset+DIM*1+YY] -= ty;
918             f[j_coord_offset+DIM*1+ZZ] -= tz;
919
920             }
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             if (rsq12<rcutoff2)
927             {
928
929             /* REACTION-FIELD ELECTROSTATICS */
930             felec            = qq12*(rinv12*rinvsq12-krf2);
931
932             fscal            = felec;
933
934             /* Calculate temporary vectorial force */
935             tx               = fscal*dx12;
936             ty               = fscal*dy12;
937             tz               = fscal*dz12;
938
939             /* Update vectorial force */
940             fix1            += tx;
941             fiy1            += ty;
942             fiz1            += tz;
943             f[j_coord_offset+DIM*2+XX] -= tx;
944             f[j_coord_offset+DIM*2+YY] -= ty;
945             f[j_coord_offset+DIM*2+ZZ] -= tz;
946
947             }
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             if (rsq20<rcutoff2)
954             {
955
956             /* REACTION-FIELD ELECTROSTATICS */
957             felec            = qq20*(rinv20*rinvsq20-krf2);
958
959             fscal            = felec;
960
961             /* Calculate temporary vectorial force */
962             tx               = fscal*dx20;
963             ty               = fscal*dy20;
964             tz               = fscal*dz20;
965
966             /* Update vectorial force */
967             fix2            += tx;
968             fiy2            += ty;
969             fiz2            += tz;
970             f[j_coord_offset+DIM*0+XX] -= tx;
971             f[j_coord_offset+DIM*0+YY] -= ty;
972             f[j_coord_offset+DIM*0+ZZ] -= tz;
973
974             }
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             if (rsq21<rcutoff2)
981             {
982
983             /* REACTION-FIELD ELECTROSTATICS */
984             felec            = qq21*(rinv21*rinvsq21-krf2);
985
986             fscal            = felec;
987
988             /* Calculate temporary vectorial force */
989             tx               = fscal*dx21;
990             ty               = fscal*dy21;
991             tz               = fscal*dz21;
992
993             /* Update vectorial force */
994             fix2            += tx;
995             fiy2            += ty;
996             fiz2            += tz;
997             f[j_coord_offset+DIM*1+XX] -= tx;
998             f[j_coord_offset+DIM*1+YY] -= ty;
999             f[j_coord_offset+DIM*1+ZZ] -= tz;
1000
1001             }
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             if (rsq22<rcutoff2)
1008             {
1009
1010             /* REACTION-FIELD ELECTROSTATICS */
1011             felec            = qq22*(rinv22*rinvsq22-krf2);
1012
1013             fscal            = felec;
1014
1015             /* Calculate temporary vectorial force */
1016             tx               = fscal*dx22;
1017             ty               = fscal*dy22;
1018             tz               = fscal*dz22;
1019
1020             /* Update vectorial force */
1021             fix2            += tx;
1022             fiy2            += ty;
1023             fiz2            += tz;
1024             f[j_coord_offset+DIM*2+XX] -= tx;
1025             f[j_coord_offset+DIM*2+YY] -= ty;
1026             f[j_coord_offset+DIM*2+ZZ] -= tz;
1027
1028             }
1029
1030             /* Inner loop uses 234 flops */
1031         }
1032         /* End of innermost loop */
1033
1034         tx = ty = tz = 0;
1035         f[i_coord_offset+DIM*0+XX] += fix0;
1036         f[i_coord_offset+DIM*0+YY] += fiy0;
1037         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1038         tx                         += fix0;
1039         ty                         += fiy0;
1040         tz                         += fiz0;
1041         f[i_coord_offset+DIM*1+XX] += fix1;
1042         f[i_coord_offset+DIM*1+YY] += fiy1;
1043         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1044         tx                         += fix1;
1045         ty                         += fiy1;
1046         tz                         += fiz1;
1047         f[i_coord_offset+DIM*2+XX] += fix2;
1048         f[i_coord_offset+DIM*2+YY] += fiy2;
1049         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1050         tx                         += fix2;
1051         ty                         += fiy2;
1052         tz                         += fiz2;
1053         fshift[i_shift_offset+XX]  += tx;
1054         fshift[i_shift_offset+YY]  += ty;
1055         fshift[i_shift_offset+ZZ]  += tz;
1056
1057         /* Increment number of inner iterations */
1058         inneriter                  += j_index_end - j_index_start;
1059
1060         /* Outer loop uses 30 flops */
1061     }
1062
1063     /* Increment number of outer iterations */
1064     outeriter        += nri;
1065
1066     /* Update outer/inner flops */
1067
1068     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*30 + inneriter*234);
1069 }