Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79
80     x                = xx[0];
81     f                = ff[0];
82
83     nri              = nlist->nri;
84     iinr             = nlist->iinr;
85     jindex           = nlist->jindex;
86     jjnr             = nlist->jjnr;
87     shiftidx         = nlist->shift;
88     gid              = nlist->gid;
89     shiftvec         = fr->shift_vec[0];
90     fshift           = fr->fshift[0];
91     facel            = fr->epsfac;
92     charge           = mdatoms->chargeA;
93     krf              = fr->ic->k_rf;
94     krf2             = krf*2.0;
95     crf              = fr->ic->c_rf;
96
97     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
98     rcutoff          = fr->rcoulomb;
99     rcutoff2         = rcutoff*rcutoff;
100
101     outeriter        = 0;
102     inneriter        = 0;
103
104     /* Start outer loop over neighborlists */
105     for(iidx=0; iidx<nri; iidx++)
106     {
107         /* Load shift vector for this list */
108         i_shift_offset   = DIM*shiftidx[iidx];
109         shX              = shiftvec[i_shift_offset+XX];
110         shY              = shiftvec[i_shift_offset+YY];
111         shZ              = shiftvec[i_shift_offset+ZZ];
112
113         /* Load limits for loop over neighbors */
114         j_index_start    = jindex[iidx];
115         j_index_end      = jindex[iidx+1];
116
117         /* Get outer coordinate index */
118         inr              = iinr[iidx];
119         i_coord_offset   = DIM*inr;
120
121         /* Load i particle coords and add shift vector */
122         ix0              = shX + x[i_coord_offset+DIM*0+XX];
123         iy0              = shY + x[i_coord_offset+DIM*0+YY];
124         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
125
126         fix0             = 0.0;
127         fiy0             = 0.0;
128         fiz0             = 0.0;
129
130         /* Load parameters for i particles */
131         iq0              = facel*charge[inr+0];
132
133         /* Reset potential sums */
134         velecsum         = 0.0;
135
136         /* Start inner kernel loop */
137         for(jidx=j_index_start; jidx<j_index_end; jidx++)
138         {
139             /* Get j neighbor index, and coordinate index */
140             jnr              = jjnr[jidx];
141             j_coord_offset   = DIM*jnr;
142
143             /* load j atom coordinates */
144             jx0              = x[j_coord_offset+DIM*0+XX];
145             jy0              = x[j_coord_offset+DIM*0+YY];
146             jz0              = x[j_coord_offset+DIM*0+ZZ];
147
148             /* Calculate displacement vector */
149             dx00             = ix0 - jx0;
150             dy00             = iy0 - jy0;
151             dz00             = iz0 - jz0;
152
153             /* Calculate squared distance and things based on it */
154             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
155
156             rinv00           = gmx_invsqrt(rsq00);
157
158             rinvsq00         = rinv00*rinv00;
159
160             /* Load parameters for j particles */
161             jq0              = charge[jnr+0];
162
163             /**************************
164              * CALCULATE INTERACTIONS *
165              **************************/
166
167             if (rsq00<rcutoff2)
168             {
169
170             qq00             = iq0*jq0;
171
172             /* REACTION-FIELD ELECTROSTATICS */
173             velec            = qq00*(rinv00+krf*rsq00-crf);
174             felec            = qq00*(rinv00*rinvsq00-krf2);
175
176             /* Update potential sums from outer loop */
177             velecsum        += velec;
178
179             fscal            = felec;
180
181             /* Calculate temporary vectorial force */
182             tx               = fscal*dx00;
183             ty               = fscal*dy00;
184             tz               = fscal*dz00;
185
186             /* Update vectorial force */
187             fix0            += tx;
188             fiy0            += ty;
189             fiz0            += tz;
190             f[j_coord_offset+DIM*0+XX] -= tx;
191             f[j_coord_offset+DIM*0+YY] -= ty;
192             f[j_coord_offset+DIM*0+ZZ] -= tz;
193
194             }
195
196             /* Inner loop uses 32 flops */
197         }
198         /* End of innermost loop */
199
200         tx = ty = tz = 0;
201         f[i_coord_offset+DIM*0+XX] += fix0;
202         f[i_coord_offset+DIM*0+YY] += fiy0;
203         f[i_coord_offset+DIM*0+ZZ] += fiz0;
204         tx                         += fix0;
205         ty                         += fiy0;
206         tz                         += fiz0;
207         fshift[i_shift_offset+XX]  += tx;
208         fshift[i_shift_offset+YY]  += ty;
209         fshift[i_shift_offset+ZZ]  += tz;
210
211         ggid                        = gid[iidx];
212         /* Update potential energies */
213         kernel_data->energygrp_elec[ggid] += velecsum;
214
215         /* Increment number of inner iterations */
216         inneriter                  += j_index_end - j_index_start;
217
218         /* Outer loop uses 14 flops */
219     }
220
221     /* Increment number of outer iterations */
222     outeriter        += nri;
223
224     /* Update outer/inner flops */
225
226     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*14 + inneriter*32);
227 }
228 /*
229  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_c
230  * Electrostatics interaction: ReactionField
231  * VdW interaction:            None
232  * Geometry:                   Particle-Particle
233  * Calculate force/pot:        Force
234  */
235 void
236 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_c
237                     (t_nblist                    * gmx_restrict       nlist,
238                      rvec                        * gmx_restrict          xx,
239                      rvec                        * gmx_restrict          ff,
240                      t_forcerec                  * gmx_restrict          fr,
241                      t_mdatoms                   * gmx_restrict     mdatoms,
242                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
243                      t_nrnb                      * gmx_restrict        nrnb)
244 {
245     int              i_shift_offset,i_coord_offset,j_coord_offset;
246     int              j_index_start,j_index_end;
247     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
248     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
249     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
250     real             *shiftvec,*fshift,*x,*f;
251     int              vdwioffset0;
252     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
253     int              vdwjidx0;
254     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
255     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
256     real             velec,felec,velecsum,facel,crf,krf,krf2;
257     real             *charge;
258
259     x                = xx[0];
260     f                = ff[0];
261
262     nri              = nlist->nri;
263     iinr             = nlist->iinr;
264     jindex           = nlist->jindex;
265     jjnr             = nlist->jjnr;
266     shiftidx         = nlist->shift;
267     gid              = nlist->gid;
268     shiftvec         = fr->shift_vec[0];
269     fshift           = fr->fshift[0];
270     facel            = fr->epsfac;
271     charge           = mdatoms->chargeA;
272     krf              = fr->ic->k_rf;
273     krf2             = krf*2.0;
274     crf              = fr->ic->c_rf;
275
276     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
277     rcutoff          = fr->rcoulomb;
278     rcutoff2         = rcutoff*rcutoff;
279
280     outeriter        = 0;
281     inneriter        = 0;
282
283     /* Start outer loop over neighborlists */
284     for(iidx=0; iidx<nri; iidx++)
285     {
286         /* Load shift vector for this list */
287         i_shift_offset   = DIM*shiftidx[iidx];
288         shX              = shiftvec[i_shift_offset+XX];
289         shY              = shiftvec[i_shift_offset+YY];
290         shZ              = shiftvec[i_shift_offset+ZZ];
291
292         /* Load limits for loop over neighbors */
293         j_index_start    = jindex[iidx];
294         j_index_end      = jindex[iidx+1];
295
296         /* Get outer coordinate index */
297         inr              = iinr[iidx];
298         i_coord_offset   = DIM*inr;
299
300         /* Load i particle coords and add shift vector */
301         ix0              = shX + x[i_coord_offset+DIM*0+XX];
302         iy0              = shY + x[i_coord_offset+DIM*0+YY];
303         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
304
305         fix0             = 0.0;
306         fiy0             = 0.0;
307         fiz0             = 0.0;
308
309         /* Load parameters for i particles */
310         iq0              = facel*charge[inr+0];
311
312         /* Start inner kernel loop */
313         for(jidx=j_index_start; jidx<j_index_end; jidx++)
314         {
315             /* Get j neighbor index, and coordinate index */
316             jnr              = jjnr[jidx];
317             j_coord_offset   = DIM*jnr;
318
319             /* load j atom coordinates */
320             jx0              = x[j_coord_offset+DIM*0+XX];
321             jy0              = x[j_coord_offset+DIM*0+YY];
322             jz0              = x[j_coord_offset+DIM*0+ZZ];
323
324             /* Calculate displacement vector */
325             dx00             = ix0 - jx0;
326             dy00             = iy0 - jy0;
327             dz00             = iz0 - jz0;
328
329             /* Calculate squared distance and things based on it */
330             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
331
332             rinv00           = gmx_invsqrt(rsq00);
333
334             rinvsq00         = rinv00*rinv00;
335
336             /* Load parameters for j particles */
337             jq0              = charge[jnr+0];
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             if (rsq00<rcutoff2)
344             {
345
346             qq00             = iq0*jq0;
347
348             /* REACTION-FIELD ELECTROSTATICS */
349             felec            = qq00*(rinv00*rinvsq00-krf2);
350
351             fscal            = felec;
352
353             /* Calculate temporary vectorial force */
354             tx               = fscal*dx00;
355             ty               = fscal*dy00;
356             tz               = fscal*dz00;
357
358             /* Update vectorial force */
359             fix0            += tx;
360             fiy0            += ty;
361             fiz0            += tz;
362             f[j_coord_offset+DIM*0+XX] -= tx;
363             f[j_coord_offset+DIM*0+YY] -= ty;
364             f[j_coord_offset+DIM*0+ZZ] -= tz;
365
366             }
367
368             /* Inner loop uses 27 flops */
369         }
370         /* End of innermost loop */
371
372         tx = ty = tz = 0;
373         f[i_coord_offset+DIM*0+XX] += fix0;
374         f[i_coord_offset+DIM*0+YY] += fiy0;
375         f[i_coord_offset+DIM*0+ZZ] += fiz0;
376         tx                         += fix0;
377         ty                         += fiy0;
378         tz                         += fiz0;
379         fshift[i_shift_offset+XX]  += tx;
380         fshift[i_shift_offset+YY]  += ty;
381         fshift[i_shift_offset+ZZ]  += tz;
382
383         /* Increment number of inner iterations */
384         inneriter                  += j_index_end - j_index_start;
385
386         /* Outer loop uses 13 flops */
387     }
388
389     /* Increment number of outer iterations */
390     outeriter        += nri;
391
392     /* Update outer/inner flops */
393
394     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*13 + inneriter*27);
395 }